Highly selective upcycling of plastic mixture waste by microwave-assisted catalysis over Zn/b-ZnO

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jun Zhao, Bonan Liu, Lunqiao Xiong, Wenchao Liu, Duanda Wang, Wangjing Ma, Litong Jiang, Jianlong Yang, Ping Wang, Tiancun Xiao, Sui Zhao, Peter P. Edwards, Junwang Tang
{"title":"Highly selective upcycling of plastic mixture waste by microwave-assisted catalysis over Zn/b-ZnO","authors":"Jun Zhao, Bonan Liu, Lunqiao Xiong, Wenchao Liu, Duanda Wang, Wangjing Ma, Litong Jiang, Jianlong Yang, Ping Wang, Tiancun Xiao, Sui Zhao, Peter P. Edwards, Junwang Tang","doi":"10.1038/s41467-024-55584-1","DOIUrl":null,"url":null,"abstract":"<p>7 billion of 9.2 billion tons of plastic produced becomes waste while conventional catalytic plastic recycling methods are vulnerable with degraded performance and intensive energy input. Here, a hybrid Zn/b-ZnO catalyst, together with the specially-designed microwave reaction system, has achieved fast plastic waste upgrading under atmospheric pressure without using H<sub>2</sub>. Bifunctional ZnO acts as a microwave absorber and substrate catalyst, and in-situ formed Zn clusters promote C-C bond cleavage and nearly 100% upcycle landfilled plastic mixtures into lubricant base oil precursors and monomers. Unprecedented turnover number (250 g<sub>plastic</sub> g<sup>−1</sup><sub>catalyst</sub>) of plastic depolymerisation and long-time stability over 50 successive cycles have been demonstrated, together with 8-time higher energy efficiency compared with conventional catalysis, indicating this strategy is an economical approach to efficient upcycling of plastics towards valuable products. Moreover, the catalyst can tolerate high contaminates, even the landfilled plastics can still be converted to lubricant base oil precursors, which has never been reported before.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"47 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55584-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

7 billion of 9.2 billion tons of plastic produced becomes waste while conventional catalytic plastic recycling methods are vulnerable with degraded performance and intensive energy input. Here, a hybrid Zn/b-ZnO catalyst, together with the specially-designed microwave reaction system, has achieved fast plastic waste upgrading under atmospheric pressure without using H2. Bifunctional ZnO acts as a microwave absorber and substrate catalyst, and in-situ formed Zn clusters promote C-C bond cleavage and nearly 100% upcycle landfilled plastic mixtures into lubricant base oil precursors and monomers. Unprecedented turnover number (250 gplastic g−1catalyst) of plastic depolymerisation and long-time stability over 50 successive cycles have been demonstrated, together with 8-time higher energy efficiency compared with conventional catalysis, indicating this strategy is an economical approach to efficient upcycling of plastics towards valuable products. Moreover, the catalyst can tolerate high contaminates, even the landfilled plastics can still be converted to lubricant base oil precursors, which has never been reported before.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信