Jun Zhao, Bonan Liu, Lunqiao Xiong, Wenchao Liu, Duanda Wang, Wangjing Ma, Litong Jiang, Jianlong Yang, Ping Wang, Tiancun Xiao, Sui Zhao, Peter P. Edwards, Junwang Tang
{"title":"Highly selective upcycling of plastic mixture waste by microwave-assisted catalysis over Zn/b-ZnO","authors":"Jun Zhao, Bonan Liu, Lunqiao Xiong, Wenchao Liu, Duanda Wang, Wangjing Ma, Litong Jiang, Jianlong Yang, Ping Wang, Tiancun Xiao, Sui Zhao, Peter P. Edwards, Junwang Tang","doi":"10.1038/s41467-024-55584-1","DOIUrl":null,"url":null,"abstract":"<p>7 billion of 9.2 billion tons of plastic produced becomes waste while conventional catalytic plastic recycling methods are vulnerable with degraded performance and intensive energy input. Here, a hybrid Zn/b-ZnO catalyst, together with the specially-designed microwave reaction system, has achieved fast plastic waste upgrading under atmospheric pressure without using H<sub>2</sub>. Bifunctional ZnO acts as a microwave absorber and substrate catalyst, and in-situ formed Zn clusters promote C-C bond cleavage and nearly 100% upcycle landfilled plastic mixtures into lubricant base oil precursors and monomers. Unprecedented turnover number (250 g<sub>plastic</sub> g<sup>−1</sup><sub>catalyst</sub>) of plastic depolymerisation and long-time stability over 50 successive cycles have been demonstrated, together with 8-time higher energy efficiency compared with conventional catalysis, indicating this strategy is an economical approach to efficient upcycling of plastics towards valuable products. Moreover, the catalyst can tolerate high contaminates, even the landfilled plastics can still be converted to lubricant base oil precursors, which has never been reported before.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"47 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55584-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
7 billion of 9.2 billion tons of plastic produced becomes waste while conventional catalytic plastic recycling methods are vulnerable with degraded performance and intensive energy input. Here, a hybrid Zn/b-ZnO catalyst, together with the specially-designed microwave reaction system, has achieved fast plastic waste upgrading under atmospheric pressure without using H2. Bifunctional ZnO acts as a microwave absorber and substrate catalyst, and in-situ formed Zn clusters promote C-C bond cleavage and nearly 100% upcycle landfilled plastic mixtures into lubricant base oil precursors and monomers. Unprecedented turnover number (250 gplastic g−1catalyst) of plastic depolymerisation and long-time stability over 50 successive cycles have been demonstrated, together with 8-time higher energy efficiency compared with conventional catalysis, indicating this strategy is an economical approach to efficient upcycling of plastics towards valuable products. Moreover, the catalyst can tolerate high contaminates, even the landfilled plastics can still be converted to lubricant base oil precursors, which has never been reported before.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.