Constraining the Nuclear Equation of State of a Neutron Star via High-frequency Quasi-periodic Oscillation in Short Gamma-Ray Bursts

Jun-Xiang Huang, Hou-Jun Lü and En-Wei Liang
{"title":"Constraining the Nuclear Equation of State of a Neutron Star via High-frequency Quasi-periodic Oscillation in Short Gamma-Ray Bursts","authors":"Jun-Xiang Huang, Hou-Jun Lü and En-Wei Liang","doi":"10.3847/1538-4357/adaceb","DOIUrl":null,"url":null,"abstract":"The determination of the equation of state (EOS) of a neutron star (NS) and its maximum mass is very important for understanding the formation and properties of NSs under extreme conditions, but they remain open questions. Short-duration gamma-ray bursts (GRBs) are believed to originate from the merger of binary NSs or giant flares (GFs) of soft gamma repeaters (SGRs). Recently, the high-frequency quasi-periodic oscillations (QPOs) have been claimed to be identified from two short GRBs (GRB 931101B and GRB 910711). In this paper, we propose that the observed high-frequency QPOs in these two short GRBs result from torsional oscillations in the GFs of SGRs associated with cold NSs, or from radial oscillations of hypermassive NSs as the hot remnants of binary NS mergers, and then to constrain the EOS of NSs. For torsional oscillations, the six selected EOSs (TM1, NL3, APR, SLy4, DDME2, and GM1) of NSs suitable for the zero-temperature condition exhibit significant overlap in mass ranges, suggesting that we cannot constrain the EOS of NSs. For radial oscillations, the six selected EOSs (IUF, TM1, TMA, FSG, BHBLp, and NL3) of NSs suitable for the high-temperature condition cannot be ruled out when redshift is considered. However, it is found that the EOS can only be constrained if the redshift and temperature of the remnant can be measured.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/adaceb","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The determination of the equation of state (EOS) of a neutron star (NS) and its maximum mass is very important for understanding the formation and properties of NSs under extreme conditions, but they remain open questions. Short-duration gamma-ray bursts (GRBs) are believed to originate from the merger of binary NSs or giant flares (GFs) of soft gamma repeaters (SGRs). Recently, the high-frequency quasi-periodic oscillations (QPOs) have been claimed to be identified from two short GRBs (GRB 931101B and GRB 910711). In this paper, we propose that the observed high-frequency QPOs in these two short GRBs result from torsional oscillations in the GFs of SGRs associated with cold NSs, or from radial oscillations of hypermassive NSs as the hot remnants of binary NS mergers, and then to constrain the EOS of NSs. For torsional oscillations, the six selected EOSs (TM1, NL3, APR, SLy4, DDME2, and GM1) of NSs suitable for the zero-temperature condition exhibit significant overlap in mass ranges, suggesting that we cannot constrain the EOS of NSs. For radial oscillations, the six selected EOSs (IUF, TM1, TMA, FSG, BHBLp, and NL3) of NSs suitable for the high-temperature condition cannot be ruled out when redshift is considered. However, it is found that the EOS can only be constrained if the redshift and temperature of the remnant can be measured.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信