Atmospheric circulation to constrain subtropical precipitation projections

IF 29.6 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Rei Chemke, Janni Yuval
{"title":"Atmospheric circulation to constrain subtropical precipitation projections","authors":"Rei Chemke, Janni Yuval","doi":"10.1038/s41558-025-02266-5","DOIUrl":null,"url":null,"abstract":"<p>Accurately assessing future precipitation changes presents one of the greatest challenges of climate change. In the tropics, changes in the Hadley circulation are expected to considerably affect precipitation in dry subtropical and wet equatorial regions. However, while climate models project a robust weakening of the Northern Hemisphere circulation in the coming decades, currently, there is low confidence in the magnitude of such weakening and its impact on regional precipitation patterns. Here we use emergent constraint analyses and observation-based Hadley circulation strength changes to show that the projected circulation weakening will probably be larger than in current predictions. The more pronounced weakening of the flow results in a doubling of the subtropical precipitation increase compared with current forecasts, specifically over Asia, Africa and the Pacific Ocean. Our findings provide more accurate tropical circulation and precipitation projections and have considerable societal impacts, given the scarcity of water in subtropical regions.</p>","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"10 1","pages":""},"PeriodicalIF":29.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41558-025-02266-5","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately assessing future precipitation changes presents one of the greatest challenges of climate change. In the tropics, changes in the Hadley circulation are expected to considerably affect precipitation in dry subtropical and wet equatorial regions. However, while climate models project a robust weakening of the Northern Hemisphere circulation in the coming decades, currently, there is low confidence in the magnitude of such weakening and its impact on regional precipitation patterns. Here we use emergent constraint analyses and observation-based Hadley circulation strength changes to show that the projected circulation weakening will probably be larger than in current predictions. The more pronounced weakening of the flow results in a doubling of the subtropical precipitation increase compared with current forecasts, specifically over Asia, Africa and the Pacific Ocean. Our findings provide more accurate tropical circulation and precipitation projections and have considerable societal impacts, given the scarcity of water in subtropical regions.

Abstract Image

准确评估未来降水量的变化是气候变化带来的最大挑战之一。在热带地区,哈德利环流的变化预计将大大影响干燥的亚热带和潮湿的赤道地区的降水量。然而,虽然气候模式预测北半球环流在未来几十年内会出现明显的减弱,但目前人们对这种减弱的幅度及其对区域降水模式的影响信心不足。在这里,我们利用突发约束分析和基于观测的哈德利环流强度变化来表明,预计的环流减弱可能会比目前的预测更大。与目前的预测相比,更明显的环流减弱会导致副热带降水量增加一倍,特别是在亚洲、非洲和太平洋地区。我们的研究结果提供了更准确的热带环流和降水预测,鉴于亚热带地区缺水,这些结果将对社会产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Climate Change
Nature Climate Change ENVIRONMENTAL SCIENCES-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
40.30
自引率
1.60%
发文量
267
审稿时长
4-8 weeks
期刊介绍: Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large. The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests. Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles. Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信