Flávia Luize Pereira de Souza, Luciano Shozo Shiratsuchi, Maurício Acconcia Dias, Marcelo Rodrigues Barbosa Júnior, Tri Deri Setiyono, Sérgio Campos, Haiying Tao
{"title":"A neural network approach employed to classify soybean plants using multi-sensor images","authors":"Flávia Luize Pereira de Souza, Luciano Shozo Shiratsuchi, Maurício Acconcia Dias, Marcelo Rodrigues Barbosa Júnior, Tri Deri Setiyono, Sérgio Campos, Haiying Tao","doi":"10.1007/s11119-025-10229-1","DOIUrl":null,"url":null,"abstract":"<p>Counting soybean plants is a crucial strategy for assessing sowing quality and supporting high production. Despite its importance, the laborious nature of traditional assessment methods makes them unreliable and not scalable. Additionally, innovative image-based solutions have demonstrated limitations in detecting dense crops such as soybeans. Therefore, in this study, we developed neural network models to analyze a set of RGB and multispectral images and perform plant classification in a comprehensive dataset, which included data collected at three vegetative stages of soybean (VC, V1, and V2). Our results demonstrated high accuracy in classifying plants using either RGB (98%) or multispectral images (92%). A significant strength of this study is the ability to classify highly dense plants, without a trend for misclassification. Clearly, our findings provide stakeholders with a timely and effective approach to counting soybean plants, reducing labor and time, while increasing reliability.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"129 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-025-10229-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Counting soybean plants is a crucial strategy for assessing sowing quality and supporting high production. Despite its importance, the laborious nature of traditional assessment methods makes them unreliable and not scalable. Additionally, innovative image-based solutions have demonstrated limitations in detecting dense crops such as soybeans. Therefore, in this study, we developed neural network models to analyze a set of RGB and multispectral images and perform plant classification in a comprehensive dataset, which included data collected at three vegetative stages of soybean (VC, V1, and V2). Our results demonstrated high accuracy in classifying plants using either RGB (98%) or multispectral images (92%). A significant strength of this study is the ability to classify highly dense plants, without a trend for misclassification. Clearly, our findings provide stakeholders with a timely and effective approach to counting soybean plants, reducing labor and time, while increasing reliability.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.