Effectiveness of strain and dopants on breaking the activity-stability trade-off of RuO2 acidic oxygen evolution electrocatalysts

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yang Liu, Yixuan Wang, Hao Li, Min Gyu Kim, Ziyang Duan, Kainat Talat, Jin Yong Lee, Mingbo Wu, Hyoyoung Lee
{"title":"Effectiveness of strain and dopants on breaking the activity-stability trade-off of RuO2 acidic oxygen evolution electrocatalysts","authors":"Yang Liu, Yixuan Wang, Hao Li, Min Gyu Kim, Ziyang Duan, Kainat Talat, Jin Yong Lee, Mingbo Wu, Hyoyoung Lee","doi":"10.1038/s41467-025-56638-8","DOIUrl":null,"url":null,"abstract":"<p>Ruthenium dioxide electrocatalysts for acidic oxygen evolution reaction suffer from mediocre activity and rather instability induced by high ruthenium-oxygen covalency. Here, the tensile strained strontium and tantalum codoped ruthenium dioxide nanocatalysts are synthesized via a molten salt-assisted quenching strategy. The tensile strained spacially elongates the ruthenium-oxygen bond and reduces covalency, thereby inhibiting the lattice oxygen participation and structural decomposition. The synergistic electronic modulations among strontium-tantalum-ruthenium groups both optimize deprotonation on oxygen sites and intermediates absorption on ruthenium sites, lowering the reaction energy barrier. Those result in a well-balanced activity-stability profile, confirmed by comprehensive experimental and theoretical analyses. Our strained electrode demonstrates an overpotential of 166 mV at 10 mA cm<sup>−2</sup> in 0.5 M H<sub>2</sub>SO<sub>4</sub> and an order of magnitude higher S-number, indicating comparable stability compared to bare catalyst. It exhibits negligible degradation rates within the long-term operation of single cell and PEM electrolyzer. This study elucidates the effectiveness of tensile strain and strategic doping in enhancing the activity and stability of ruthenium-based catalysts for acidic oxygen evolution reactions.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56638-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ruthenium dioxide electrocatalysts for acidic oxygen evolution reaction suffer from mediocre activity and rather instability induced by high ruthenium-oxygen covalency. Here, the tensile strained strontium and tantalum codoped ruthenium dioxide nanocatalysts are synthesized via a molten salt-assisted quenching strategy. The tensile strained spacially elongates the ruthenium-oxygen bond and reduces covalency, thereby inhibiting the lattice oxygen participation and structural decomposition. The synergistic electronic modulations among strontium-tantalum-ruthenium groups both optimize deprotonation on oxygen sites and intermediates absorption on ruthenium sites, lowering the reaction energy barrier. Those result in a well-balanced activity-stability profile, confirmed by comprehensive experimental and theoretical analyses. Our strained electrode demonstrates an overpotential of 166 mV at 10 mA cm−2 in 0.5 M H2SO4 and an order of magnitude higher S-number, indicating comparable stability compared to bare catalyst. It exhibits negligible degradation rates within the long-term operation of single cell and PEM electrolyzer. This study elucidates the effectiveness of tensile strain and strategic doping in enhancing the activity and stability of ruthenium-based catalysts for acidic oxygen evolution reactions.

Abstract Image

菌株和掺杂剂对打破RuO2酸性析氧电催化剂活性-稳定性权衡的影响
酸性析氧反应用二氧化钌电催化剂活性一般,钌氧共价高,不稳定。本文采用熔盐辅助淬火的方法合成了拉伸应变锶和钽共掺杂的二氧化钌纳米催化剂。拉伸应变在空间上拉长了钌氧键,降低了共价,从而抑制了晶格氧参与和结构分解。锶-钽-钌基团之间的协同电子调制既优化了氧位上的去质子化,又优化了钌位上的中间体吸收,降低了反应能垒。综合实验和理论分析证实,这些结果形成了平衡良好的活动-稳定性剖面。我们的应变电极在0.5 M H2SO4中显示出10 mA cm - 2时的过电位为166 mV, s数高了一个数量级,表明与裸催化剂相比稳定性相当。在单电池和PEM电解槽的长期运行中,它的降解率可以忽略不计。本研究阐明了拉伸应变和策略掺杂在增强酸性析氧反应钌基催化剂的活性和稳定性方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信