Quantification of Pseudomonas aeruginosa biofilms using electrochemical methods.

Access microbiology Pub Date : 2025-02-14 eCollection Date: 2025-01-01 DOI:10.1099/acmi.0.000906.v4
Lily Riordan, Perrine Lasserre, Damion Corrigan, Katherine Duncan
{"title":"Quantification of Pseudomonas aeruginosa biofilms using electrochemical methods.","authors":"Lily Riordan, Perrine Lasserre, Damion Corrigan, Katherine Duncan","doi":"10.1099/acmi.0.000906.v4","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, 2.29% of deaths worldwide are caused by antimicrobial resistance (AMR), compared to 1.16% from malaria and 1.55% from human immunodeficiency virus and acquired immunodeficiency syndrome. Furthermore, deaths resulting from AMR are projected to increase to more than 10 million <i>per annum</i> by 2050. Biofilms are common in hospital settings, such as medical implants, and pose a particular problem as they have shown resistance to antibiotics up to 1000-fold higher than planktonic cells because of dormant states and reduced growth rates. This is compounded by the fact that many antibiotics target mechanisms of active metabolism and are therefore less effective. The work presented here aimed to develop a method for biofilm quantification, which could be translated into the clinical setting, as well as used in the screening of antibiofilm agents. This was carried out alongside crystal violet staining, as a published point of reference. This work builds upon work previously presented by Dunphy <i>et al.</i>, in which the authors attempted to quantify the biofilm formation of <i>Pseudomonas aeruginosa</i> strain using hyperspectral imaging. Here, using electrochemical impedance spectroscopy and square wave voltammetry, the biofilm formation of two <i>P. aeruginosa</i> strains was detected within an hour after seeding <i>P. aeruginosa</i> on the sensor. A 40% decrease in impedance modulus was shown when <i>P. aeruginosa</i> biofilm had formed, compared to the media-only control. As such, this work offers a starting point for the development of real-time biofilm sensing technologies, which can be translated into implantable materials.</p>","PeriodicalId":94366,"journal":{"name":"Access microbiology","volume":"7 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829079/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Access microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1099/acmi.0.000906.v4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, 2.29% of deaths worldwide are caused by antimicrobial resistance (AMR), compared to 1.16% from malaria and 1.55% from human immunodeficiency virus and acquired immunodeficiency syndrome. Furthermore, deaths resulting from AMR are projected to increase to more than 10 million per annum by 2050. Biofilms are common in hospital settings, such as medical implants, and pose a particular problem as they have shown resistance to antibiotics up to 1000-fold higher than planktonic cells because of dormant states and reduced growth rates. This is compounded by the fact that many antibiotics target mechanisms of active metabolism and are therefore less effective. The work presented here aimed to develop a method for biofilm quantification, which could be translated into the clinical setting, as well as used in the screening of antibiofilm agents. This was carried out alongside crystal violet staining, as a published point of reference. This work builds upon work previously presented by Dunphy et al., in which the authors attempted to quantify the biofilm formation of Pseudomonas aeruginosa strain using hyperspectral imaging. Here, using electrochemical impedance spectroscopy and square wave voltammetry, the biofilm formation of two P. aeruginosa strains was detected within an hour after seeding P. aeruginosa on the sensor. A 40% decrease in impedance modulus was shown when P. aeruginosa biofilm had formed, compared to the media-only control. As such, this work offers a starting point for the development of real-time biofilm sensing technologies, which can be translated into implantable materials.

用电化学方法定量测定铜绿假单胞菌生物膜。
目前,全世界有2.29%的死亡是由抗菌素耐药性(AMR)引起的,而疟疾和人类免疫缺陷病毒和获得性免疫缺陷综合征分别为1.16%和1.55%。此外,到2050年,抗菌素耐药性造成的死亡预计将增加到每年1 000多万人。生物膜在医院环境中很常见,例如医疗植入物,由于休眠状态和生长速度降低,它们对抗生素的耐药性比浮游细胞高1000倍,这构成了一个特别的问题。由于许多抗生素针对活跃代谢机制,因此效果较差,这一事实使情况更加复杂。本文提出的工作旨在开发一种生物膜量化方法,这种方法可以转化为临床环境,也可以用于筛选抗生素。这是与结晶紫染色一起进行的,作为发表的参考点。这项工作建立在Dunphy等人先前提出的工作的基础上,其中作者试图利用高光谱成像来量化铜绿假单胞菌菌株的生物膜形成。本文采用电化学阻抗谱和方波伏安法,在传感器上播种铜绿假单胞菌1小时内,检测了两株铜绿假单胞菌的生物膜形成情况。与仅培养基对照相比,铜绿假单胞菌生物膜形成时阻抗模量下降40%。因此,这项工作为实时生物膜传感技术的发展提供了一个起点,这些技术可以转化为可植入材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信