A forensic engineering technique for analysis of an explosion incident.

Ganchai Tanapornraweekit, Thimira Abeysinghe, Somnuk Tangtermsirikul
{"title":"A forensic engineering technique for analysis of an explosion incident.","authors":"Ganchai Tanapornraweekit, Thimira Abeysinghe, Somnuk Tangtermsirikul","doi":"10.1111/1556-4029.70005","DOIUrl":null,"url":null,"abstract":"<p><p>This article investigates the validity of current forensic practices to analyze an explosion event. The purpose of this study is to use forensic engineering techniques with the integrated models for the simulation of blast fragments and blast pressure to determine an explosive weight used in a bombing incident and later predict a lethal radius caused by blast pressure and a lethal zone caused by fragment impact. The real explosion incident at the Erawan shrine in central Bangkok on August 17, 2015, is selected as a case study. By comparing the structural damage at the blast site to the one obtained from finite element (FE) analyses, an estimated bare charge weight of TNT used in the incident can be obtained. It was found that an estimated bare charge of 3 kg TNT equivalent could have been used for the bomb. To confirm the validity of the calculated explosive weight, a combined lethal zone from blast pressure and scattered fragments was analyzed. Human damage due to the blast pressure is analyzed based on Bowen's lethality curves. The lethality zone from expelled fragments is drawn based on a 50% probability of lethality, which considers the hit density and kinetic energy of the fragment. The analyzed lethal zone agrees reasonably well with the actual observed human damage level. The proposed forensic engineering technique offers the potential for enhancing management and policies in homeland security, contributing to a safer community.</p>","PeriodicalId":94080,"journal":{"name":"Journal of forensic sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of forensic sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/1556-4029.70005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article investigates the validity of current forensic practices to analyze an explosion event. The purpose of this study is to use forensic engineering techniques with the integrated models for the simulation of blast fragments and blast pressure to determine an explosive weight used in a bombing incident and later predict a lethal radius caused by blast pressure and a lethal zone caused by fragment impact. The real explosion incident at the Erawan shrine in central Bangkok on August 17, 2015, is selected as a case study. By comparing the structural damage at the blast site to the one obtained from finite element (FE) analyses, an estimated bare charge weight of TNT used in the incident can be obtained. It was found that an estimated bare charge of 3 kg TNT equivalent could have been used for the bomb. To confirm the validity of the calculated explosive weight, a combined lethal zone from blast pressure and scattered fragments was analyzed. Human damage due to the blast pressure is analyzed based on Bowen's lethality curves. The lethality zone from expelled fragments is drawn based on a 50% probability of lethality, which considers the hit density and kinetic energy of the fragment. The analyzed lethal zone agrees reasonably well with the actual observed human damage level. The proposed forensic engineering technique offers the potential for enhancing management and policies in homeland security, contributing to a safer community.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信