Helmet material design for mitigating traumatic axonal injuries through AI-driven constitutive law enhancement.

Vincent Varanges, Pezhman Eghbali, Naser Nasrollahzadeh, Jean-Yves Fournier, Pierre-Etienne Bourban, Dominique P Pioletti
{"title":"Helmet material design for mitigating traumatic axonal injuries through AI-driven constitutive law enhancement.","authors":"Vincent Varanges, Pezhman Eghbali, Naser Nasrollahzadeh, Jean-Yves Fournier, Pierre-Etienne Bourban, Dominique P Pioletti","doi":"10.1038/s44172-025-00370-0","DOIUrl":null,"url":null,"abstract":"<p><p>Sports helmets provide incomplete protection against brain injuries. Here we aim to improve helmet liner efficiency by employing a novel approach that optimizes their properties. By exploiting a finite element model that simulates head impacts, we developed deep learning models that predict the peak rotational velocity and acceleration of a dummy head protected by various liner materials. The deep learning models exhibited a remarkable correlation coefficient of 0.99 within the testing dataset with mean absolute error of 0.8 rad.s<sup>-1</sup> and 0.6 krad.s<sup>-2</sup> respectively, highlighting their predictive ability. Deep learning-based material optimization demonstrated a significant reduction in the risk of brain injuries, ranging from -5% to -65%, for impact energies between 250 and 500 Joules. This result emphasizes the effectiveness of material design to mitigate sport-related brain injury risks. This research introduces promising avenues for optimizing helmet designs to enhance their protective capabilities.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"22"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830762/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00370-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sports helmets provide incomplete protection against brain injuries. Here we aim to improve helmet liner efficiency by employing a novel approach that optimizes their properties. By exploiting a finite element model that simulates head impacts, we developed deep learning models that predict the peak rotational velocity and acceleration of a dummy head protected by various liner materials. The deep learning models exhibited a remarkable correlation coefficient of 0.99 within the testing dataset with mean absolute error of 0.8 rad.s-1 and 0.6 krad.s-2 respectively, highlighting their predictive ability. Deep learning-based material optimization demonstrated a significant reduction in the risk of brain injuries, ranging from -5% to -65%, for impact energies between 250 and 500 Joules. This result emphasizes the effectiveness of material design to mitigate sport-related brain injury risks. This research introduces promising avenues for optimizing helmet designs to enhance their protective capabilities.

通过人工智能驱动的本构法增强减轻创伤性轴索损伤的头盔材料设计。
运动头盔不能完全保护大脑免受伤害。在这里,我们的目标是提高头盔衬垫效率,采用一种新颖的方法,优化其性能。通过利用模拟头部撞击的有限元模型,我们开发了深度学习模型,可以预测由各种衬垫材料保护的假头部的峰值转速和加速度。深度学习模型在测试数据集中的相关系数为0.99,平均绝对误差为0.8 rad。S-1和0.6克拉。S-2,突出其预测能力。基于深度学习的材料优化表明,当撞击能量在250到500焦耳之间时,脑损伤的风险显著降低,从-5%到-65%不等。这一结果强调了材料设计在降低运动相关脑损伤风险方面的有效性。这项研究介绍了有前途的途径,优化头盔设计,以提高他们的保护能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信