The effect of cannabis-derived terpenes on alveolar macrophage function.

IF 3.6 Q2 TOXICOLOGY
Frontiers in toxicology Pub Date : 2025-01-31 eCollection Date: 2024-01-01 DOI:10.3389/ftox.2024.1504508
Patrick M Greiss, Jacquelyn D Rich, Geoffrey A McKay, Dao Nguyen, Mark G Lefsrud, David H Eidelman, Carolyn J Baglole
{"title":"The effect of cannabis-derived terpenes on alveolar macrophage function.","authors":"Patrick M Greiss, Jacquelyn D Rich, Geoffrey A McKay, Dao Nguyen, Mark G Lefsrud, David H Eidelman, Carolyn J Baglole","doi":"10.3389/ftox.2024.1504508","DOIUrl":null,"url":null,"abstract":"<p><p><i>Cannabis sativa</i> (marijuana) is used by millions of people around the world. <i>C. sativa</i> produces hundreds of secondary metabolites including cannabinoids, flavones and terpenes. Terpenes are a broad class of organic compounds that give cannabis and other plants its aroma. Previous studies have demonstrated that terpenes may exert anti-inflammatory properties on immune cells. However, it is not known whether terpenes derived from cannabis alone or in combination with the cannabinoid ∆<sup>9</sup>-THC impacts the function of alveolar macrophages, a specialized pulmonary innate immune cell that is important in host defense against pathogens. Therefore, we investigated the immunomodulatory properties of two commercially-available cannabis terpene mixtures on the function of MH-S cells, a murine alveolar macrophage cell line. MH-S cells were exposed to terpene mixtures at sublethal doses and to the bacterial product lipopolysaccharide (LPS). We measured inflammatory cytokine levels using qRT-PCR and multiplex ELISA, as well as phagocytosis of opsonized IgG-coated beads or mCherry-expressing <i>Escherichia coli</i> via flow cytometry. Neither terpene mixture affected inflammatory cytokine production by MH-S cells in response to LPS. Terpenes increased MH-S cell uptake of opsonized beads but had no effect on phagocytosis of <i>E. coli</i>. Addition of ∆<sup>9</sup>-THC to terpenes did not potentiate cytotoxicity nor phagocytosis. These results suggest that terpenes from cannabis have minimal impact on the function of alveolar macrophages.</p>","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":"6 ","pages":"1504508"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825813/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ftox.2024.1504508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cannabis sativa (marijuana) is used by millions of people around the world. C. sativa produces hundreds of secondary metabolites including cannabinoids, flavones and terpenes. Terpenes are a broad class of organic compounds that give cannabis and other plants its aroma. Previous studies have demonstrated that terpenes may exert anti-inflammatory properties on immune cells. However, it is not known whether terpenes derived from cannabis alone or in combination with the cannabinoid ∆9-THC impacts the function of alveolar macrophages, a specialized pulmonary innate immune cell that is important in host defense against pathogens. Therefore, we investigated the immunomodulatory properties of two commercially-available cannabis terpene mixtures on the function of MH-S cells, a murine alveolar macrophage cell line. MH-S cells were exposed to terpene mixtures at sublethal doses and to the bacterial product lipopolysaccharide (LPS). We measured inflammatory cytokine levels using qRT-PCR and multiplex ELISA, as well as phagocytosis of opsonized IgG-coated beads or mCherry-expressing Escherichia coli via flow cytometry. Neither terpene mixture affected inflammatory cytokine production by MH-S cells in response to LPS. Terpenes increased MH-S cell uptake of opsonized beads but had no effect on phagocytosis of E. coli. Addition of ∆9-THC to terpenes did not potentiate cytotoxicity nor phagocytosis. These results suggest that terpenes from cannabis have minimal impact on the function of alveolar macrophages.

大麻萜类化合物对肺泡巨噬细胞功能的影响。
全世界有数百万人吸食大麻。大麻产生数百种次生代谢物,包括大麻素、黄酮和萜烯。萜烯是一种广泛的有机化合物,它赋予大麻和其他植物香气。先前的研究表明,萜烯可能对免疫细胞发挥抗炎作用。然而,目前尚不清楚从大麻中单独提取的萜烯或与大麻素∆9-THC联合使用是否会影响肺泡巨噬细胞的功能,肺泡巨噬细胞是一种特殊的肺部先天免疫细胞,在宿主防御病原体中起重要作用。因此,我们研究了两种市售大麻萜烯混合物对小鼠肺泡巨噬细胞系MH-S细胞功能的免疫调节特性。MH-S细胞暴露于亚致死剂量的萜烯混合物和细菌产物脂多糖(LPS)。我们使用qRT-PCR和多重ELISA检测了炎症细胞因子水平,并通过流式细胞术检测了活化的igg包被珠或表达mccherry的大肠杆菌的吞噬情况。两种萜烯混合物均不影响LPS作用下MH-S细胞产生炎症细胞因子。萜烯增加了MH-S细胞对调理珠的摄取,但对大肠杆菌的吞噬作用没有影响。萜烯中加入∆9-四氢大麻酚不会增强细胞毒性和吞噬作用。这些结果表明,大麻萜烯对肺泡巨噬细胞功能的影响很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信