{"title":"Treponema Denticola Activates NF-κB Pathway via Toll-like Receptor 2.","authors":"Eitoyo Kokubu, Yutaro Ando, Yuichiro Kikuchi, Hideo Yonezawa, Kazuyuki Ishihara","doi":"10.2209/tdcpublication.2024-0023","DOIUrl":null,"url":null,"abstract":"<p><p>Treponema denticola is frequently isolated together with Porphyromonas gingivalis from the lesions seen in cases of chronic periodontitis and is considered a major pathogen of this disease. It has several virulence factors, including a major surface protein (Msp) and a major surface protease, dentilisin. The effect of these virulence factors on the host immune response remains to be elucidated, however. Toll-like receptors (TLRs) in the host can recognize pathogen-associated molecular patterns. Bacteria stimulate TLRs and activate the pro-inflammatory nuclear factor-kappa B pathway. Therefore, the aim of this study was to investigate the effect of T. denticola on TLR pathways. Toll-like receptor 4 and TLR2 reporter cell lines, which secrete alkaline phosphatase in response to TLR signals, were infected with the T. denticola wild type, an Msp-deficient mutant, a dentilisin-deficient mutant, or their extracts obtained via sonication. Signals from TLR2 or TLR4 cells were evaluated by alkaline phosphatase activity. Toll-like receptor 2 signals were detected in all T. denticola strains and sonication extracts, while no TLR4 signal was detected. Infection with the dentilisin-deficient mutant induced the strongest TLR2 signal among the strains. Sonication extracts of the wild type and Msp-deficient mutant showed the same level of TLR2 signaling. The TLR2 signal in the sonication extracts from the wild type was inhibited by Sparstolonin B, an antagonist of TLR2, in a dose-dependent manner. These results indicate that T. denticola is recognized by epithelial cells mainly via TLR2. The outer sheath structure may conceal potential ligands for TLR2.</p>","PeriodicalId":45490,"journal":{"name":"Bulletin of Tokyo Dental College","volume":" ","pages":"41-50"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Tokyo Dental College","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2209/tdcpublication.2024-0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/15 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Treponema denticola is frequently isolated together with Porphyromonas gingivalis from the lesions seen in cases of chronic periodontitis and is considered a major pathogen of this disease. It has several virulence factors, including a major surface protein (Msp) and a major surface protease, dentilisin. The effect of these virulence factors on the host immune response remains to be elucidated, however. Toll-like receptors (TLRs) in the host can recognize pathogen-associated molecular patterns. Bacteria stimulate TLRs and activate the pro-inflammatory nuclear factor-kappa B pathway. Therefore, the aim of this study was to investigate the effect of T. denticola on TLR pathways. Toll-like receptor 4 and TLR2 reporter cell lines, which secrete alkaline phosphatase in response to TLR signals, were infected with the T. denticola wild type, an Msp-deficient mutant, a dentilisin-deficient mutant, or their extracts obtained via sonication. Signals from TLR2 or TLR4 cells were evaluated by alkaline phosphatase activity. Toll-like receptor 2 signals were detected in all T. denticola strains and sonication extracts, while no TLR4 signal was detected. Infection with the dentilisin-deficient mutant induced the strongest TLR2 signal among the strains. Sonication extracts of the wild type and Msp-deficient mutant showed the same level of TLR2 signaling. The TLR2 signal in the sonication extracts from the wild type was inhibited by Sparstolonin B, an antagonist of TLR2, in a dose-dependent manner. These results indicate that T. denticola is recognized by epithelial cells mainly via TLR2. The outer sheath structure may conceal potential ligands for TLR2.