Astragalus polysaccharide attenuates retinal ischemia reperfusion-induced microglial activation through sortilin-related vacuolar protein sorting 10 domain containing receptor 2/laminin subunit alpha 1 upregulation.

IF 2.5 4区 医学 Q2 PATHOLOGY
Cytojournal Pub Date : 2025-01-07 eCollection Date: 2025-01-01 DOI:10.25259/Cytojournal_131_2024
Juanjuan Li, Hua Li, Chunling Wei, Chen Chen, Zhikun Zheng
{"title":"Astragalus polysaccharide attenuates retinal ischemia reperfusion-induced microglial activation through sortilin-related vacuolar protein sorting 10 domain containing receptor 2/laminin subunit alpha 1 upregulation.","authors":"Juanjuan Li, Hua Li, Chunling Wei, Chen Chen, Zhikun Zheng","doi":"10.25259/Cytojournal_131_2024","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Microglial activation is a hallmark of pathogenic retinal conditions such as retinal ischemia-reperfusion (RIR). While sortilin-related vacuolar protein sorting 10 domain containing receptor 2 (Sorcs2) and laminin subunit alpha 1 (Lama1) have been implicated in neuroinflammatory processes, their roles in regulating microglial activation in RIR are not reported. The current work studied the potential of Sorcs2 and Lama1 as negative regulators of microglial activation in RIR and assessed the therapeutic potential of Astragalus polysaccharide (AP).</p><p><strong>Material and methods: </strong>Transcriptome profiling was conducted in retinal specimens of RIR group 72 h after RIR induction. Oxygen-glucose deprivation/reperfusion (OGD/R) in rat microglial cells was employed as the cellular induction model of RIR. The functional role of Sorcs2 and Lama1 in dictating microglial activation was investigated <i>in vitro</i> and <i>in vivo</i> using lentivirus-based gene expression. Further, the potential effect of AP on RIR-mediated microglial activation was investigated.</p><p><strong>Results: </strong>Sorcs2 and Lama1 were identified as two downregulated genes in retinal samples following RIR. OGD/R induction triggered pro-inflammatory microglial activation and induced the downregulation of Sorcs2 and Lama1. Sorcs2 or Lama1 overexpression hindered OGD/R-induced microglial activation <i>in vitro</i> and attenuated inflammatory expansion of microglia cells in RIR-induced rat retinal samples. AP treatment was able to neutralize the oxidative stress, promote the expression of Sorcs2 and Lama1, and suppress microglial activation.</p><p><strong>Conclusion: </strong>Our findings pinpoint Sorcs2 and Lama1 as negative regulators of microglial activation in RIR. AP could be employed as an antioxidant to attenuate microglial activation and ameliorate the inflammatory damages in RIR.</p>","PeriodicalId":49082,"journal":{"name":"Cytojournal","volume":"22 ","pages":"2"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829307/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytojournal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.25259/Cytojournal_131_2024","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Microglial activation is a hallmark of pathogenic retinal conditions such as retinal ischemia-reperfusion (RIR). While sortilin-related vacuolar protein sorting 10 domain containing receptor 2 (Sorcs2) and laminin subunit alpha 1 (Lama1) have been implicated in neuroinflammatory processes, their roles in regulating microglial activation in RIR are not reported. The current work studied the potential of Sorcs2 and Lama1 as negative regulators of microglial activation in RIR and assessed the therapeutic potential of Astragalus polysaccharide (AP).

Material and methods: Transcriptome profiling was conducted in retinal specimens of RIR group 72 h after RIR induction. Oxygen-glucose deprivation/reperfusion (OGD/R) in rat microglial cells was employed as the cellular induction model of RIR. The functional role of Sorcs2 and Lama1 in dictating microglial activation was investigated in vitro and in vivo using lentivirus-based gene expression. Further, the potential effect of AP on RIR-mediated microglial activation was investigated.

Results: Sorcs2 and Lama1 were identified as two downregulated genes in retinal samples following RIR. OGD/R induction triggered pro-inflammatory microglial activation and induced the downregulation of Sorcs2 and Lama1. Sorcs2 or Lama1 overexpression hindered OGD/R-induced microglial activation in vitro and attenuated inflammatory expansion of microglia cells in RIR-induced rat retinal samples. AP treatment was able to neutralize the oxidative stress, promote the expression of Sorcs2 and Lama1, and suppress microglial activation.

Conclusion: Our findings pinpoint Sorcs2 and Lama1 as negative regulators of microglial activation in RIR. AP could be employed as an antioxidant to attenuate microglial activation and ameliorate the inflammatory damages in RIR.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cytojournal
Cytojournal PATHOLOGY-
CiteScore
2.20
自引率
42.10%
发文量
56
审稿时长
>12 weeks
期刊介绍: The CytoJournal is an open-access peer-reviewed journal committed to publishing high-quality articles in the field of Diagnostic Cytopathology including Molecular aspects. The journal is owned by the Cytopathology Foundation and published by the Scientific Scholar.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信