{"title":"Single-cell and spatial transcriptomics reveal a potential role of ATF3 in brain metastasis of lung adenocarcinoma.","authors":"Chaoliang Xu, Jingpiao Bao, Deshen Pan, Kehong Wei, Qing Gao, Weihong Lin, Yujie Ma, Meiqing Lou, Cheng Chang, Deshui Jia","doi":"10.21037/tlcr-24-784","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Brain metastasis (BrM) has been a challenge for lung cancer treatment, but the mechanisms underlying lung cancer BrM remain elusive. This study aims to dissect cellular components and their spatial distribution in human BrM tumors of lung adenocarcinoma (LUAD) and identify potential therapeutic targets.</p><p><strong>Methods: </strong>We performed single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) on three LUAD BrMs, and validated our findings using public scRNA-seq data of 10 LUAD BrMs. Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR) and functional experiments were employed for experimental studies.</p><p><strong>Results: </strong>By combining scRNA-seq and ST, our analysis revealed the inter- and intra-tumoral heterogeneity of cellular components and their spatial localization within LUAD BrMs. Through RNA velocity and transcription factor (TF) regulatory activity analyses, we identified ATF3 as a potential regulator of the mesenchymal-epithelial transition (MET) program, which plays crucial roles in the colonization of tumor cells at metastatic sites. Furthermore, we demonstrated that knockdown of <i>ATF3</i> significantly inhibited cancer cell proliferation while promoting cancer cell migration. Mechanistically, ATF3 knockdown could reverse the MET program. Additionally, we revealed that LGALS3/ANXA2-mediated cell-cell interaction between macrophage and tumor cells may also promote the MET program.</p><p><strong>Conclusions: </strong>Our study provides a single-cell atlas of the cellular composition in BrM of LUAD and identifies ATF3 as a potential therapeutic target for BrM treatment.</p>","PeriodicalId":23271,"journal":{"name":"Translational lung cancer research","volume":"14 1","pages":"209-223"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826269/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational lung cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/tlcr-24-784","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Brain metastasis (BrM) has been a challenge for lung cancer treatment, but the mechanisms underlying lung cancer BrM remain elusive. This study aims to dissect cellular components and their spatial distribution in human BrM tumors of lung adenocarcinoma (LUAD) and identify potential therapeutic targets.
Methods: We performed single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) on three LUAD BrMs, and validated our findings using public scRNA-seq data of 10 LUAD BrMs. Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR) and functional experiments were employed for experimental studies.
Results: By combining scRNA-seq and ST, our analysis revealed the inter- and intra-tumoral heterogeneity of cellular components and their spatial localization within LUAD BrMs. Through RNA velocity and transcription factor (TF) regulatory activity analyses, we identified ATF3 as a potential regulator of the mesenchymal-epithelial transition (MET) program, which plays crucial roles in the colonization of tumor cells at metastatic sites. Furthermore, we demonstrated that knockdown of ATF3 significantly inhibited cancer cell proliferation while promoting cancer cell migration. Mechanistically, ATF3 knockdown could reverse the MET program. Additionally, we revealed that LGALS3/ANXA2-mediated cell-cell interaction between macrophage and tumor cells may also promote the MET program.
Conclusions: Our study provides a single-cell atlas of the cellular composition in BrM of LUAD and identifies ATF3 as a potential therapeutic target for BrM treatment.
期刊介绍:
Translational Lung Cancer Research(TLCR, Transl Lung Cancer Res, Print ISSN 2218-6751; Online ISSN 2226-4477) is an international, peer-reviewed, open-access journal, which was founded in March 2012. TLCR is indexed by PubMed/PubMed Central and the Chemical Abstracts Service (CAS) Databases. It is published quarterly the first year, and published bimonthly since February 2013. It provides practical up-to-date information on prevention, early detection, diagnosis, and treatment of lung cancer. Specific areas of its interest include, but not limited to, multimodality therapy, markers, imaging, tumor biology, pathology, chemoprevention, and technical advances related to lung cancer.