Inhibition of the MRTF-A/SRF signaling axis alleviates vocal fold scarring

IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ryan M. Friedman , Huy D. Truong , Matthew R. Aronson , Elizabeth A. Brown , Marco Angelozzi , Jeffrey F. Chen , Karen B. Zur , Véronique Lefebvre , Riccardo Gottardi
{"title":"Inhibition of the MRTF-A/SRF signaling axis alleviates vocal fold scarring","authors":"Ryan M. Friedman ,&nbsp;Huy D. Truong ,&nbsp;Matthew R. Aronson ,&nbsp;Elizabeth A. Brown ,&nbsp;Marco Angelozzi ,&nbsp;Jeffrey F. Chen ,&nbsp;Karen B. Zur ,&nbsp;Véronique Lefebvre ,&nbsp;Riccardo Gottardi","doi":"10.1016/j.matbio.2025.02.004","DOIUrl":null,"url":null,"abstract":"<div><div>Vocal fold scarring, the most common cause of poor voice after airway injury, involves the transition of vocal fold fibroblasts to contractile myofibroblasts. Vocal fold myofibroblasts can be characterized by significant extracellular matrix (ECM) secretion and stress fiber formation. Biochemical signals, such as transforming growth factor (TGF)-β1, and biophysical cues, such as matrix stiffening, have been shown to induce the fibroblast-to-myofibroblast transition. To identify key intracellular pathways that may mediate myofibroblast activation, we performed bulk RNA sequencing of human vocal fold fibroblasts treated with or without TGF-β1 and found that genes downstream of myocardin related transcription factor A (MRTF-A) and serum response factor (SRF) were upregulated in TGFβ1-induced myofibroblasts. We then show that both TGF-β1 and ECM stiffening induce MRTF-A and SRF nuclear translocation during vocal fold myofibroblast activation. Inhibition of MRTF-A via CCG-257,081 reduced pro-fibrotic gene expression, the percentage of α-smooth muscle actin (α-SMA)-positive fibroblasts, and cell contractility <em>in vitro</em>. In a murine model of vocal fold scarring, MRTF-A inhibition reduced vocal fold scarring severity, evidenced by reduced epithelial thickening, decreased glycosaminoglycan content, and collagen deposition, and decreased expression of <em>ACTA2</em>. Our study suggests that the MRTF-A/SRF pathway regulates vocal fold myofibroblast activation, and that inhibition of MRTF-A has a protective effect against vocal fold scarring in mice.</div></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"137 ","pages":"Pages 1-11"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0945053X25000174","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Vocal fold scarring, the most common cause of poor voice after airway injury, involves the transition of vocal fold fibroblasts to contractile myofibroblasts. Vocal fold myofibroblasts can be characterized by significant extracellular matrix (ECM) secretion and stress fiber formation. Biochemical signals, such as transforming growth factor (TGF)-β1, and biophysical cues, such as matrix stiffening, have been shown to induce the fibroblast-to-myofibroblast transition. To identify key intracellular pathways that may mediate myofibroblast activation, we performed bulk RNA sequencing of human vocal fold fibroblasts treated with or without TGF-β1 and found that genes downstream of myocardin related transcription factor A (MRTF-A) and serum response factor (SRF) were upregulated in TGFβ1-induced myofibroblasts. We then show that both TGF-β1 and ECM stiffening induce MRTF-A and SRF nuclear translocation during vocal fold myofibroblast activation. Inhibition of MRTF-A via CCG-257,081 reduced pro-fibrotic gene expression, the percentage of α-smooth muscle actin (α-SMA)-positive fibroblasts, and cell contractility in vitro. In a murine model of vocal fold scarring, MRTF-A inhibition reduced vocal fold scarring severity, evidenced by reduced epithelial thickening, decreased glycosaminoglycan content, and collagen deposition, and decreased expression of ACTA2. Our study suggests that the MRTF-A/SRF pathway regulates vocal fold myofibroblast activation, and that inhibition of MRTF-A has a protective effect against vocal fold scarring in mice.
抑制MRTF-A/SRF信号轴可减轻声带瘢痕形成。
声带瘢痕形成是气道损伤后声音不佳的最常见原因,涉及声带成纤维细胞向收缩性肌成纤维细胞的转变。声带肌成纤维细胞的特征是细胞外基质(ECM)分泌和应激纤维的形成。生物化学信号,如转化生长因子(TGF)-β1,和生物物理信号,如基质硬化,已被证明可以诱导成纤维细胞向肌成纤维细胞转变。为了确定可能介导肌成纤维细胞活化的关键细胞内通路,我们对TGF-β1或不TGF-β1处理的人声带成纤维细胞进行了大量RNA测序,发现在TGF-β1诱导的肌成纤维细胞中,心肌素相关转录因子A (MRTF-A)和血清反应因子(SRF)下游基因上调。然后我们发现TGF-β1和ECM硬化在声带肌成纤维细胞激活过程中诱导MRTF-A和SRF核易位。CCG-257081抑制MRTF-A可降低促纤维化基因表达、α-平滑肌肌动蛋白(α-SMA)阳性成纤维细胞百分比和细胞体外收缩性。在小鼠声带瘢痕模型中,MRTF-A抑制降低了声带瘢痕的严重程度,表现为上皮增厚减少,糖胺聚糖含量减少,胶原沉积减少,ACTA2表达降低。我们的研究表明,MRTF-A/SRF通路调节声带肌成纤维细胞的激活,抑制MRTF-A对小鼠声带瘢痕形成具有保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matrix Biology
Matrix Biology 生物-生化与分子生物学
CiteScore
11.40
自引率
4.30%
发文量
77
审稿时长
45 days
期刊介绍: Matrix Biology (established in 1980 as Collagen and Related Research) is a cutting-edge journal that is devoted to publishing the latest results in matrix biology research. We welcome articles that reside at the nexus of understanding the cellular and molecular pathophysiology of the extracellular matrix. Matrix Biology focusses on solving elusive questions, opening new avenues of thought and discovery, and challenging longstanding biological paradigms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信