Kelsey L Grantham, Andrew B Forbes, Richard Hooper, Jessica Kasza
{"title":"The relative efficiency of staircase and stepped wedge cluster randomised trial designs.","authors":"Kelsey L Grantham, Andrew B Forbes, Richard Hooper, Jessica Kasza","doi":"10.1177/09622802251317613","DOIUrl":null,"url":null,"abstract":"<p><p>The stepped wedge design is an appealing longitudinal cluster randomised trial design. However, it places a large burden on participating clusters by requiring all clusters to collect data in all periods of the trial. The staircase design may be a desirable alternative: treatment sequences consist of a limited number of measurement periods before and after the implementation of the intervention. In this article, we explore the relative efficiency of the stepped wedge design to several variants of the 'basic staircase' design, which has one control followed by one intervention period in each sequence. We model outcomes using linear mixed models and consider a sampling scheme where each participant is measured once. We first consider a basic staircase design embedded within the stepped wedge design, then basic staircase designs with either more clusters or larger cluster-period sizes, with the same total number of participants and with fewer total participants than the stepped wedge design. The relative efficiency of the designs depends on the intracluster correlation structure, correlation parameters and the trial configuration, including the number of sequences and cluster-period size. For a wide range of realistic trial settings, a basic staircase design will deliver greater statistical power than a stepped wedge design with the same number of participants, and in some cases, with even fewer total participants.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251317613"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802251317613","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
The stepped wedge design is an appealing longitudinal cluster randomised trial design. However, it places a large burden on participating clusters by requiring all clusters to collect data in all periods of the trial. The staircase design may be a desirable alternative: treatment sequences consist of a limited number of measurement periods before and after the implementation of the intervention. In this article, we explore the relative efficiency of the stepped wedge design to several variants of the 'basic staircase' design, which has one control followed by one intervention period in each sequence. We model outcomes using linear mixed models and consider a sampling scheme where each participant is measured once. We first consider a basic staircase design embedded within the stepped wedge design, then basic staircase designs with either more clusters or larger cluster-period sizes, with the same total number of participants and with fewer total participants than the stepped wedge design. The relative efficiency of the designs depends on the intracluster correlation structure, correlation parameters and the trial configuration, including the number of sequences and cluster-period size. For a wide range of realistic trial settings, a basic staircase design will deliver greater statistical power than a stepped wedge design with the same number of participants, and in some cases, with even fewer total participants.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)