Enhancing Patient Education on Cardiovascular Rehabilitation with Large Language Models.

Missouri medicine Pub Date : 2025-01-01
Som Singh, Eric Errampalli, Nathan Errampalli, Mohammed Shah Miran
{"title":"Enhancing Patient Education on Cardiovascular Rehabilitation with Large Language Models.","authors":"Som Singh, Eric Errampalli, Nathan Errampalli, Mohammed Shah Miran","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>There are barriers that exist for individuals to adhere to cardiovascular rehabilitation programs. A key driver to patient adherence is appropriately educating patients. A growing education tool is using large language models to answer patient questions.</p><p><strong>Methods: </strong>The primary objective of this study was to evaluate the readability quality of educational responses provided by large language models for questions regarding cardiac rehabilitation using Gunning Fog, Flesh Kincaid, and Flesch Reading Ease scores.</p><p><strong>Results: </strong>The findings of this study demonstrate that the mean Gunning Fog, Flesch Kincaid, and Flesch Reading Ease scores do not meet US grade reading level recommendations across three models: ChatGPT 3.5, Copilot, and Gemini. The Gemini and Copilot models demonstrated greater ease of readability compared to ChatGPT 3.5.</p><p><strong>Conclusions: </strong>Large language models could serve as educational tools on cardiovascular rehabilitation, but there remains a need to improve the text readability for these to effectively educate patients.</p>","PeriodicalId":74203,"journal":{"name":"Missouri medicine","volume":"122 1","pages":"67-71"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827661/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Missouri medicine","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: There are barriers that exist for individuals to adhere to cardiovascular rehabilitation programs. A key driver to patient adherence is appropriately educating patients. A growing education tool is using large language models to answer patient questions.

Methods: The primary objective of this study was to evaluate the readability quality of educational responses provided by large language models for questions regarding cardiac rehabilitation using Gunning Fog, Flesh Kincaid, and Flesch Reading Ease scores.

Results: The findings of this study demonstrate that the mean Gunning Fog, Flesch Kincaid, and Flesch Reading Ease scores do not meet US grade reading level recommendations across three models: ChatGPT 3.5, Copilot, and Gemini. The Gemini and Copilot models demonstrated greater ease of readability compared to ChatGPT 3.5.

Conclusions: Large language models could serve as educational tools on cardiovascular rehabilitation, but there remains a need to improve the text readability for these to effectively educate patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信