Revisiting equivalent optical properties for cerebrospinal fluid to improve diffusion-based modeling accuracy in the brain.

IF 4.8 2区 医学 Q1 NEUROSCIENCES
Neurophotonics Pub Date : 2025-01-01 Epub Date: 2025-02-14 DOI:10.1117/1.NPh.12.1.015009
Aiden Vincent Lewis, Qianqian Fang
{"title":"Revisiting equivalent optical properties for cerebrospinal fluid to improve diffusion-based modeling accuracy in the brain.","authors":"Aiden Vincent Lewis, Qianqian Fang","doi":"10.1117/1.NPh.12.1.015009","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>The diffusion approximation (DA) is used in functional near-infrared spectroscopy (fNIRS) studies despite its known limitations due to the presence of cerebrospinal fluid (CSF). Many of these studies rely on a set of empirical CSF optical properties, recommended by a previous simulation study, that were not selected for the purpose of minimizing DA modeling errors.</p><p><strong>Aim: </strong>We aim to directly quantify the accuracy of DA solutions in brain models by comparing those with the gold-standard solutions produced by the mesh-based Monte Carlo (MMC), based on which we derive updated recommendations.</p><p><strong>Approach: </strong>For both a five-layer head and Colin27 atlas models, we obtain DA solutions by independently sweeping the CSF absorption ( <math> <mrow><msub><mi>μ</mi> <mi>a</mi></msub> </mrow> </math> ) and reduced scattering ( <math> <mrow> <msub><mrow><mi>μ</mi></mrow> <mrow> <msup><mrow><mi>s</mi></mrow> <mrow><mo>'</mo></mrow> </msup> </mrow> </msub> </mrow> </math> ) coefficients. Using an MMC solution with literature CSF optical properties as a reference, we compute the errors for surface fluence, total brain sensitivity, and brain energy deposition, and identify the optimized settings where such error is minimized.</p><p><strong>Results: </strong>Our results suggest that previously recommended CSF properties can cause significant errors (8.7% to 52%) in multiple tested metrics. By simultaneously sweeping <math> <mrow><msub><mi>μ</mi> <mi>a</mi></msub> </mrow> </math> and <math> <mrow> <msubsup><mrow><mi>μ</mi></mrow> <mrow><mi>s</mi></mrow> <mrow><mo>'</mo></mrow> </msubsup> </mrow> </math> , we can identify infinite numbers of solutions that can exactly match DA with MMC solutions for any single tested metric. Furthermore, it is also possible to simultaneously minimize multiple metrics at multiple source/detector separations, leading to our updated recommendation of setting <math> <mrow> <msubsup><mrow><mi>μ</mi></mrow> <mrow><mi>s</mi></mrow> <mrow><mo>'</mo></mrow> </msubsup> <mo>=</mo> <mn>0.15</mn> <mtext>  </mtext> <msup><mrow><mi>mm</mi></mrow> <mrow><mo>-</mo> <mn>1</mn></mrow> </msup> </mrow> </math> while maintaining physiological <math> <mrow><msub><mi>μ</mi> <mi>a</mi></msub> </mrow> </math> for CSF in DA simulations.</p><p><strong>Conclusions: </strong>Our updated recommendation of CSF equivalent optical properties can greatly reduce the model mismatches between DA and MMC solutions at multiple metrics without sacrificing computational speed. We also show that it is possible to eliminate such a mismatch for a single or a pair of metrics of interest.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"12 1","pages":"015009"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828630/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.12.1.015009","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: The diffusion approximation (DA) is used in functional near-infrared spectroscopy (fNIRS) studies despite its known limitations due to the presence of cerebrospinal fluid (CSF). Many of these studies rely on a set of empirical CSF optical properties, recommended by a previous simulation study, that were not selected for the purpose of minimizing DA modeling errors.

Aim: We aim to directly quantify the accuracy of DA solutions in brain models by comparing those with the gold-standard solutions produced by the mesh-based Monte Carlo (MMC), based on which we derive updated recommendations.

Approach: For both a five-layer head and Colin27 atlas models, we obtain DA solutions by independently sweeping the CSF absorption ( μ a ) and reduced scattering ( μ s ' ) coefficients. Using an MMC solution with literature CSF optical properties as a reference, we compute the errors for surface fluence, total brain sensitivity, and brain energy deposition, and identify the optimized settings where such error is minimized.

Results: Our results suggest that previously recommended CSF properties can cause significant errors (8.7% to 52%) in multiple tested metrics. By simultaneously sweeping μ a and μ s ' , we can identify infinite numbers of solutions that can exactly match DA with MMC solutions for any single tested metric. Furthermore, it is also possible to simultaneously minimize multiple metrics at multiple source/detector separations, leading to our updated recommendation of setting μ s ' = 0.15    mm - 1 while maintaining physiological μ a for CSF in DA simulations.

Conclusions: Our updated recommendation of CSF equivalent optical properties can greatly reduce the model mismatches between DA and MMC solutions at multiple metrics without sacrificing computational speed. We also show that it is possible to eliminate such a mismatch for a single or a pair of metrics of interest.

重新研究脑脊液的等效光学特性,以提高大脑中基于扩散的建模精度。
意义:扩散近似法(DA)被用于功能性近红外光谱(fNIRS)研究,尽管其已知的局限性是由于脑脊液(CSF)的存在。许多这些研究依赖于一组经验CSF光学特性,这是由之前的模拟研究推荐的,而不是为了最小化DA建模误差而选择的。目的:我们的目标是通过与基于网格的蒙特卡罗(MMC)产生的金标准解决方案进行比较,直接量化脑模型中DA解决方案的准确性,并在此基础上得出更新的建议。方法:对于五层头部和Colin27图谱模型,我们通过独立扫描脑脊液吸收(μ a)和减少散射(μ s’)系数获得DA解。以文献CSF光学性质的MMC溶液为参考,我们计算了表面通量、总脑灵敏度和脑能量沉积的误差,并确定了将这些误差最小化的最佳设置。结果:我们的研究结果表明,先前推荐的CSF特性在多个测试指标中可能会导致显著的误差(8.7%至52%)。通过同时扫描μ a和μ s ',我们可以找出无限个解,这些解可以精确匹配任何单个测试度量的DA和MMC解。此外,也可以同时最小化多个源/检测器分离的多个指标,导致我们更新建议设置μ s ' = 0.15 mm - 1,同时在DA模拟中保持脑脊液的生理μ a。结论:我们最新推荐的CSF等效光学性质可以在不牺牲计算速度的情况下大大减少DA和MMC解决方案在多个指标上的模型不匹配。我们还展示了消除单个或一对感兴趣的度量的不匹配是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurophotonics
Neurophotonics Neuroscience-Neuroscience (miscellaneous)
CiteScore
7.20
自引率
11.30%
发文量
114
审稿时长
21 weeks
期刊介绍: At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信