Revisiting equivalent optical properties for cerebrospinal fluid to improve diffusion-based modeling accuracy in the brain.

IF 4.8 2区 医学 Q1 NEUROSCIENCES
Neurophotonics Pub Date : 2025-01-01 Epub Date: 2025-02-14 DOI:10.1117/1.NPh.12.1.015009
Aiden Vincent Lewis, Qianqian Fang
{"title":"Revisiting equivalent optical properties for cerebrospinal fluid to improve diffusion-based modeling accuracy in the brain.","authors":"Aiden Vincent Lewis, Qianqian Fang","doi":"10.1117/1.NPh.12.1.015009","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>The diffusion approximation (DA) is used in functional near-infrared spectroscopy (fNIRS) studies despite its known limitations due to the presence of cerebrospinal fluid (CSF). Many of these studies rely on a set of empirical CSF optical properties, recommended by a previous simulation study, that were not selected for the purpose of minimizing DA modeling errors.</p><p><strong>Aim: </strong>We aim to directly quantify the accuracy of DA solutions in brain models by comparing those with the gold-standard solutions produced by the mesh-based Monte Carlo (MMC), based on which we derive updated recommendations.</p><p><strong>Approach: </strong>For both a five-layer head and Colin27 atlas models, we obtain DA solutions by independently sweeping the CSF absorption ( <math> <mrow><msub><mi>μ</mi> <mi>a</mi></msub> </mrow> </math> ) and reduced scattering ( <math> <mrow> <msub><mrow><mi>μ</mi></mrow> <mrow> <msup><mrow><mi>s</mi></mrow> <mrow><mo>'</mo></mrow> </msup> </mrow> </msub> </mrow> </math> ) coefficients. Using an MMC solution with literature CSF optical properties as a reference, we compute the errors for surface fluence, total brain sensitivity, and brain energy deposition, and identify the optimized settings where such error is minimized.</p><p><strong>Results: </strong>Our results suggest that previously recommended CSF properties can cause significant errors (8.7% to 52%) in multiple tested metrics. By simultaneously sweeping <math> <mrow><msub><mi>μ</mi> <mi>a</mi></msub> </mrow> </math> and <math> <mrow> <msubsup><mrow><mi>μ</mi></mrow> <mrow><mi>s</mi></mrow> <mrow><mo>'</mo></mrow> </msubsup> </mrow> </math> , we can identify infinite numbers of solutions that can exactly match DA with MMC solutions for any single tested metric. Furthermore, it is also possible to simultaneously minimize multiple metrics at multiple source/detector separations, leading to our updated recommendation of setting <math> <mrow> <msubsup><mrow><mi>μ</mi></mrow> <mrow><mi>s</mi></mrow> <mrow><mo>'</mo></mrow> </msubsup> <mo>=</mo> <mn>0.15</mn> <mtext>  </mtext> <msup><mrow><mi>mm</mi></mrow> <mrow><mo>-</mo> <mn>1</mn></mrow> </msup> </mrow> </math> while maintaining physiological <math> <mrow><msub><mi>μ</mi> <mi>a</mi></msub> </mrow> </math> for CSF in DA simulations.</p><p><strong>Conclusions: </strong>Our updated recommendation of CSF equivalent optical properties can greatly reduce the model mismatches between DA and MMC solutions at multiple metrics without sacrificing computational speed. We also show that it is possible to eliminate such a mismatch for a single or a pair of metrics of interest.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"12 1","pages":"015009"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828630/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.12.1.015009","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: The diffusion approximation (DA) is used in functional near-infrared spectroscopy (fNIRS) studies despite its known limitations due to the presence of cerebrospinal fluid (CSF). Many of these studies rely on a set of empirical CSF optical properties, recommended by a previous simulation study, that were not selected for the purpose of minimizing DA modeling errors.

Aim: We aim to directly quantify the accuracy of DA solutions in brain models by comparing those with the gold-standard solutions produced by the mesh-based Monte Carlo (MMC), based on which we derive updated recommendations.

Approach: For both a five-layer head and Colin27 atlas models, we obtain DA solutions by independently sweeping the CSF absorption ( μ a ) and reduced scattering ( μ s ' ) coefficients. Using an MMC solution with literature CSF optical properties as a reference, we compute the errors for surface fluence, total brain sensitivity, and brain energy deposition, and identify the optimized settings where such error is minimized.

Results: Our results suggest that previously recommended CSF properties can cause significant errors (8.7% to 52%) in multiple tested metrics. By simultaneously sweeping μ a and μ s ' , we can identify infinite numbers of solutions that can exactly match DA with MMC solutions for any single tested metric. Furthermore, it is also possible to simultaneously minimize multiple metrics at multiple source/detector separations, leading to our updated recommendation of setting μ s ' = 0.15    mm - 1 while maintaining physiological μ a for CSF in DA simulations.

Conclusions: Our updated recommendation of CSF equivalent optical properties can greatly reduce the model mismatches between DA and MMC solutions at multiple metrics without sacrificing computational speed. We also show that it is possible to eliminate such a mismatch for a single or a pair of metrics of interest.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurophotonics
Neurophotonics Neuroscience-Neuroscience (miscellaneous)
CiteScore
7.20
自引率
11.30%
发文量
114
审稿时长
21 weeks
期刊介绍: At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信