Immunomodulatory effects of invasive and non-invasive brain stimulation in Parkinson's disease.

IF 3.1 3区 医学 Q2 CLINICAL NEUROLOGY
Evridiki Asimakidou, Christos Sidiropoulos
{"title":"Immunomodulatory effects of invasive and non-invasive brain stimulation in Parkinson's disease.","authors":"Evridiki Asimakidou, Christos Sidiropoulos","doi":"10.1016/j.parkreldis.2025.107314","DOIUrl":null,"url":null,"abstract":"<p><p>Accumulating evidence points to a critical role of the immune system in the neurodegenerative process in Parkinson's disease (PD). This late knowledge has revolutionised our understanding of the pathogenetic mechanisms underlying PD and has opened new avenues toward disease-modifying rather than dopamine-replacement therapeutic approaches. When pharmacological treatments fail to adequately alleviate clinical symptoms, brain stimulation techniques are taken into consideration. Deep brain stimulation (DBS) constitutes the most common method for invasive brain stimulation, while the non-invasive brain stimulation paradigms comprise among others repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS). How each brain stimulation paradigm interferes with disease pathogenesis still remains elusive. In light of recent evidence supporting the involvement of the immune system in PD, a question that arises is whether brain stimulation techniques have an immunomodulatory potential. Here, we summarize the existing knowledge and provide mechanistic insights that should foster future research. Overall, it appears that DBS and rTMS can modulate both the central and the peripheral component of the immune system and can lead to clinical improvement through immunosuppressive/anti-inflammatory mechanisms. The paucity of evidence for tDCS and tACS precludes any conclusions and highlights the necessity of more mechanistic studies focusing on their immunomodulatory potential, if any. Any pre-clinical findings warrant further clinical validation using human in vivo markers and post-mortem human brain tissue. Unravelling the mechanisms that underpin the beneficial therapeutic effects of brain stimulation in PD patients can contribute substantially to the fine-tuning of the current stimulation protocols and pave the way for more efficient and clinically meaningful neuromodulation paradigms.</p>","PeriodicalId":19970,"journal":{"name":"Parkinsonism & related disorders","volume":" ","pages":"107314"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parkinsonism & related disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.parkreldis.2025.107314","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Accumulating evidence points to a critical role of the immune system in the neurodegenerative process in Parkinson's disease (PD). This late knowledge has revolutionised our understanding of the pathogenetic mechanisms underlying PD and has opened new avenues toward disease-modifying rather than dopamine-replacement therapeutic approaches. When pharmacological treatments fail to adequately alleviate clinical symptoms, brain stimulation techniques are taken into consideration. Deep brain stimulation (DBS) constitutes the most common method for invasive brain stimulation, while the non-invasive brain stimulation paradigms comprise among others repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS). How each brain stimulation paradigm interferes with disease pathogenesis still remains elusive. In light of recent evidence supporting the involvement of the immune system in PD, a question that arises is whether brain stimulation techniques have an immunomodulatory potential. Here, we summarize the existing knowledge and provide mechanistic insights that should foster future research. Overall, it appears that DBS and rTMS can modulate both the central and the peripheral component of the immune system and can lead to clinical improvement through immunosuppressive/anti-inflammatory mechanisms. The paucity of evidence for tDCS and tACS precludes any conclusions and highlights the necessity of more mechanistic studies focusing on their immunomodulatory potential, if any. Any pre-clinical findings warrant further clinical validation using human in vivo markers and post-mortem human brain tissue. Unravelling the mechanisms that underpin the beneficial therapeutic effects of brain stimulation in PD patients can contribute substantially to the fine-tuning of the current stimulation protocols and pave the way for more efficient and clinically meaningful neuromodulation paradigms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Parkinsonism & related disorders
Parkinsonism & related disorders 医学-临床神经学
CiteScore
6.20
自引率
4.90%
发文量
292
审稿时长
39 days
期刊介绍: Parkinsonism & Related Disorders publishes the results of basic and clinical research contributing to the understanding, diagnosis and treatment of all neurodegenerative syndromes in which Parkinsonism, Essential Tremor or related movement disorders may be a feature. Regular features will include: Review Articles, Point of View articles, Full-length Articles, Short Communications, Case Reports and Letter to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信