Alberto Canzone, Giacomo Belmonte, Antonino Patti, Domenico Savio Salvatore Vicari, Fabio Rapisarda, Valerio Giustino, Patrik Drid, Antonino Bianco
{"title":"The multiple uses of artificial intelligence in exercise programs: a narrative review.","authors":"Alberto Canzone, Giacomo Belmonte, Antonino Patti, Domenico Savio Salvatore Vicari, Fabio Rapisarda, Valerio Giustino, Patrik Drid, Antonino Bianco","doi":"10.3389/fpubh.2025.1510801","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artificial intelligence is based on algorithms that enable machines to perform tasks and activities that generally require human intelligence, and its use offers innovative solutions in various fields. Machine learning, a subset of artificial intelligence, concentrates on empowering computers to learn and enhance from data autonomously; this narrative review seeks to elucidate the utilization of artificial intelligence in fostering physical activity, training, exercise, and health outcomes, addressing a significant gap in the comprehension of practical applications.</p><p><strong>Methods: </strong>Only Randomized Controlled Trials (RCTs) published in English were included. Inclusion criteria: all RCTs that use artificial intelligence to program, supervise, manage, or assist physical activity, training, exercise, or health programs. Only studies published from January 1, 2014, were considered. Exclusion criteria: all the studies that used robot-assisted, robot-supported, or robotic training were excluded.</p><p><strong>Results: </strong>A total of 1772 studies were identified. After the first stage, where the duplicates were removed, 1,004 articles were screened by title and abstract. A total of 24 studies were identified, and finally, after a full-text review, 15 studies were identified as meeting all eligibility criteria for inclusion. The findings suggest that artificial intelligence holds promise in promoting physical activity across diverse populations, including children, adolescents, adults, older adult, and individuals with disabilities.</p><p><strong>Conclusion: </strong>Our research found that artificial intelligence, machine learning and deep learning techniques were used: (a) as part of applications to generate automatic messages and be able to communicate with users; (b) as a predictive approach and for gesture and posture recognition; (c) as a control system; (d) as data collector; and (e) as a guided trainer.</p>","PeriodicalId":12548,"journal":{"name":"Frontiers in Public Health","volume":"13 ","pages":"1510801"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825809/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Public Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fpubh.2025.1510801","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Artificial intelligence is based on algorithms that enable machines to perform tasks and activities that generally require human intelligence, and its use offers innovative solutions in various fields. Machine learning, a subset of artificial intelligence, concentrates on empowering computers to learn and enhance from data autonomously; this narrative review seeks to elucidate the utilization of artificial intelligence in fostering physical activity, training, exercise, and health outcomes, addressing a significant gap in the comprehension of practical applications.
Methods: Only Randomized Controlled Trials (RCTs) published in English were included. Inclusion criteria: all RCTs that use artificial intelligence to program, supervise, manage, or assist physical activity, training, exercise, or health programs. Only studies published from January 1, 2014, were considered. Exclusion criteria: all the studies that used robot-assisted, robot-supported, or robotic training were excluded.
Results: A total of 1772 studies were identified. After the first stage, where the duplicates were removed, 1,004 articles were screened by title and abstract. A total of 24 studies were identified, and finally, after a full-text review, 15 studies were identified as meeting all eligibility criteria for inclusion. The findings suggest that artificial intelligence holds promise in promoting physical activity across diverse populations, including children, adolescents, adults, older adult, and individuals with disabilities.
Conclusion: Our research found that artificial intelligence, machine learning and deep learning techniques were used: (a) as part of applications to generate automatic messages and be able to communicate with users; (b) as a predictive approach and for gesture and posture recognition; (c) as a control system; (d) as data collector; and (e) as a guided trainer.
期刊介绍:
Frontiers in Public Health is a multidisciplinary open-access journal which publishes rigorously peer-reviewed research and is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians, policy makers and the public worldwide. The journal aims at overcoming current fragmentation in research and publication, promoting consistency in pursuing relevant scientific themes, and supporting finding dissemination and translation into practice.
Frontiers in Public Health is organized into Specialty Sections that cover different areas of research in the field. Please refer to the author guidelines for details on article types and the submission process.