Metabolite pathway alterations identified by magnetic resonance metabolomics in a proximal tubular epithelial cell line treated with TGF-β1.

IF 2.2 Q3 PHYSIOLOGY
Tyrone L R Humphries, Soobin Lee, Aaron J Urquhart, David A Vesey, Aaron S Micallef, Clay Winterford, Andrew J Kassianos, Graham J Galloway, Ross S Francis, Glenda C Gobe
{"title":"Metabolite pathway alterations identified by magnetic resonance metabolomics in a proximal tubular epithelial cell line treated with TGF-β1.","authors":"Tyrone L R Humphries, Soobin Lee, Aaron J Urquhart, David A Vesey, Aaron S Micallef, Clay Winterford, Andrew J Kassianos, Graham J Galloway, Ross S Francis, Glenda C Gobe","doi":"10.14814/phy2.70249","DOIUrl":null,"url":null,"abstract":"<p><p>Tubulointerstitial fibrosis is a characteristic hallmark of chronic kidney disease (CKD). Metabolic perturbations in cellular energy metabolism contribute to the pathogenesis of CKD, but the chemical contributors remain unclear. The aim of this investigation was to use two dimensional <sup>1</sup>H-nuclear magnetic resonance (2D-COSY) metabolomics to identify the chemical changes of kidney fibrogenesis. An in vitro transforming growth factor-β1 (TGF-β1)-induced model of kidney fibrogenesis with human kidney-2 (HK-2) proximal tubular epithelial cells (PTEC) was used. The model was validated by assaying for various pro-fibrotic molecules, using quantitative PCR and Western blotting. 2D-COSY was performed on treated cells. Morphological and functional changes characteristic of tubulointerstitial fibrosis were confirmed in the model; expression of fibronectin, collagen type IV, smooth muscle actin, oxidative stress enzymes increased (p < 0.05). NMR metabolomics provided evidence of altered metabolite signatures associated with glycolysis and glutamine metabolism, with decreased myo-inositol and choline, and metabolites of the oxidative phase of the pentose phosphate pathway with increased glucose and glucuronic acid. The altered PTEC cellular metabolism likely supports the rapid fibrogenic energy demands. These results, using 2D-COSY metabolomics, support development of a biomarker panel of fibrosis detectable using clinical magnetic resonance spectroscopy to diagnose and manage CKD.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":"13 4","pages":"e70249"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830627/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tubulointerstitial fibrosis is a characteristic hallmark of chronic kidney disease (CKD). Metabolic perturbations in cellular energy metabolism contribute to the pathogenesis of CKD, but the chemical contributors remain unclear. The aim of this investigation was to use two dimensional 1H-nuclear magnetic resonance (2D-COSY) metabolomics to identify the chemical changes of kidney fibrogenesis. An in vitro transforming growth factor-β1 (TGF-β1)-induced model of kidney fibrogenesis with human kidney-2 (HK-2) proximal tubular epithelial cells (PTEC) was used. The model was validated by assaying for various pro-fibrotic molecules, using quantitative PCR and Western blotting. 2D-COSY was performed on treated cells. Morphological and functional changes characteristic of tubulointerstitial fibrosis were confirmed in the model; expression of fibronectin, collagen type IV, smooth muscle actin, oxidative stress enzymes increased (p < 0.05). NMR metabolomics provided evidence of altered metabolite signatures associated with glycolysis and glutamine metabolism, with decreased myo-inositol and choline, and metabolites of the oxidative phase of the pentose phosphate pathway with increased glucose and glucuronic acid. The altered PTEC cellular metabolism likely supports the rapid fibrogenic energy demands. These results, using 2D-COSY metabolomics, support development of a biomarker panel of fibrosis detectable using clinical magnetic resonance spectroscopy to diagnose and manage CKD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiological Reports
Physiological Reports PHYSIOLOGY-
CiteScore
4.20
自引率
4.00%
发文量
374
审稿时长
9 weeks
期刊介绍: Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信