Efficiency of case-crossover versus time-series study designs for extreme heat exposures.

IF 3.3 Q2 ENVIRONMENTAL SCIENCES
Environmental Epidemiology Pub Date : 2025-02-13 eCollection Date: 2025-04-01 DOI:10.1097/EE9.0000000000000370
Caleb Schimke, Erika Garcia, Sam J Silva, Sandrah P Eckel
{"title":"Efficiency of case-crossover versus time-series study designs for extreme heat exposures.","authors":"Caleb Schimke, Erika Garcia, Sam J Silva, Sandrah P Eckel","doi":"10.1097/EE9.0000000000000370","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Time-stratified case-crossover (CC) and Poisson time series (TS) are two popular methods for relating acute health outcomes to time-varying ubiquitous environmental exposures. Our aim is to compare the performance of these methods in estimating associations with rare, extreme heat exposures and mortality-an increasingly relevant exposure in our changing climate.</p><p><strong>Methods: </strong>Daily mortality data were simulated in various scenarios similar to observed Los Angeles County data from 2014 to 2019 (N = 367,712 deaths). We treated observed temperature as either a continuous or dichotomized variable and controlled for day of week and a smooth function of time. Five temperature dichotomization cutoffs between the 80th and 99th percentile were chosen to investigate the effects of extreme heat events. In each of 10,000 simulations, the CC and several TS models with varying degrees of freedom for time were fit to the data. We reported bias, variance, and relative efficiency (ratio of variance for a \"reference\" TS method to variance of another method) of temperature association estimates.</p><p><strong>Results: </strong>CC estimates had larger uncertainty than TS methods, with the relative efficiency of CC ranging from 91% under the 80th percentile cutoff to 80% under the 99th percentile cutoff. As previously reported, methods best capturing data-generating time trends generally had the least bias. Additionally, TS estimates for observed Los Angeles data were larger with less uncertainty.</p><p><strong>Conclusions: </strong>We provided new evidence that, compared with TS, CC has increasingly poor efficiency for rarer exposures in ecological study settings with shared, regional exposures, regardless of underlying time trends. Analysts should consider these results when applying either TS or CC methods.</p>","PeriodicalId":11713,"journal":{"name":"Environmental Epidemiology","volume":"9 2","pages":"e370"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828017/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/EE9.0000000000000370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Time-stratified case-crossover (CC) and Poisson time series (TS) are two popular methods for relating acute health outcomes to time-varying ubiquitous environmental exposures. Our aim is to compare the performance of these methods in estimating associations with rare, extreme heat exposures and mortality-an increasingly relevant exposure in our changing climate.

Methods: Daily mortality data were simulated in various scenarios similar to observed Los Angeles County data from 2014 to 2019 (N = 367,712 deaths). We treated observed temperature as either a continuous or dichotomized variable and controlled for day of week and a smooth function of time. Five temperature dichotomization cutoffs between the 80th and 99th percentile were chosen to investigate the effects of extreme heat events. In each of 10,000 simulations, the CC and several TS models with varying degrees of freedom for time were fit to the data. We reported bias, variance, and relative efficiency (ratio of variance for a "reference" TS method to variance of another method) of temperature association estimates.

Results: CC estimates had larger uncertainty than TS methods, with the relative efficiency of CC ranging from 91% under the 80th percentile cutoff to 80% under the 99th percentile cutoff. As previously reported, methods best capturing data-generating time trends generally had the least bias. Additionally, TS estimates for observed Los Angeles data were larger with less uncertainty.

Conclusions: We provided new evidence that, compared with TS, CC has increasingly poor efficiency for rarer exposures in ecological study settings with shared, regional exposures, regardless of underlying time trends. Analysts should consider these results when applying either TS or CC methods.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Epidemiology
Environmental Epidemiology Medicine-Public Health, Environmental and Occupational Health
CiteScore
5.70
自引率
2.80%
发文量
71
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信