Design, Synthesis, and Characterization of 1-(Anthracen-9-ylmethyl)-1,5,9-triazacyclododecane (Ant-[12]aneN3) and Its DNA Photocleavage Activity.

IF 1.5 4区 医学 Q4 CHEMISTRY, MEDICINAL
Yoshimi Ichimaru, Koichi Kato, Yoshihiro Yamaguchi, Takayuki Sakamoto, Wanchun Jin, Masaaki Kurihara, Mikako Fujita, Masami Otsuka, Hiromasa Kurosaki
{"title":"Design, Synthesis, and Characterization of 1-(Anthracen-9-ylmethyl)-1,5,9-triazacyclododecane (Ant-[12]aneN3) and Its DNA Photocleavage Activity.","authors":"Yoshimi Ichimaru, Koichi Kato, Yoshihiro Yamaguchi, Takayuki Sakamoto, Wanchun Jin, Masaaki Kurihara, Mikako Fujita, Masami Otsuka, Hiromasa Kurosaki","doi":"10.1248/cpb.c24-00705","DOIUrl":null,"url":null,"abstract":"<p><p>Here, a DNA cleavage reagent (1-(anthracen-9-ylmethyl)-1,5,9-triazacyclododecane = Ant-[12]aneN3) was designed and synthesized, and its DNA photocleavage activity under UV irradiation at λ = 365 nm was evaluated. Ant-[12]aneN3 is a molecule containing anthracene as the photosensitizer and [12]aneN3 ( = 1,5,9-triazacyclododecane) as the DNA-interacting component. The cyclic polyamine [12]aneN3 could coordinate with zinc ions (Zn<sup>II</sup>) and affect DNA cleavage activity. Therefore, when Ant-[12]aneN3 reacted with Zn(NO<sub>3</sub>)‧6H<sub>2</sub>O, the product was not a Zn<sup>II</sup> complex but an N-protonated form of Ant-[12]aneN3. In DNA cleavage experiments with the pUC19 plasmid, Ant-[12]aneN3 also showed DNA photocleavage activity in a Zn<sup>II</sup>-independent manner. That is, [12]aneN3 enhances the DNA photocleavage activity of anthracene in a Zn<sup>II</sup>-independent manner, unlike bpa (bis(2-picolyl)amine), which was previously reported to enhance DNA cleavage activity by chelating Zn<sup>II</sup>. Under physiological conditions, the nitrogen atoms of [12]aneN3 appear protonated without the addition of Zn<sup>II</sup> salts and showed an affinity for the negatively charged DNA. The results of this study may facilitate the design of effective DNA cleavage reagents.</p>","PeriodicalId":9773,"journal":{"name":"Chemical & pharmaceutical bulletin","volume":"73 2","pages":"103-107"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/cpb.c24-00705","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Here, a DNA cleavage reagent (1-(anthracen-9-ylmethyl)-1,5,9-triazacyclododecane = Ant-[12]aneN3) was designed and synthesized, and its DNA photocleavage activity under UV irradiation at λ = 365 nm was evaluated. Ant-[12]aneN3 is a molecule containing anthracene as the photosensitizer and [12]aneN3 ( = 1,5,9-triazacyclododecane) as the DNA-interacting component. The cyclic polyamine [12]aneN3 could coordinate with zinc ions (ZnII) and affect DNA cleavage activity. Therefore, when Ant-[12]aneN3 reacted with Zn(NO3)‧6H2O, the product was not a ZnII complex but an N-protonated form of Ant-[12]aneN3. In DNA cleavage experiments with the pUC19 plasmid, Ant-[12]aneN3 also showed DNA photocleavage activity in a ZnII-independent manner. That is, [12]aneN3 enhances the DNA photocleavage activity of anthracene in a ZnII-independent manner, unlike bpa (bis(2-picolyl)amine), which was previously reported to enhance DNA cleavage activity by chelating ZnII. Under physiological conditions, the nitrogen atoms of [12]aneN3 appear protonated without the addition of ZnII salts and showed an affinity for the negatively charged DNA. The results of this study may facilitate the design of effective DNA cleavage reagents.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
132
审稿时长
1.7 months
期刊介绍: The CPB covers various chemical topics in the pharmaceutical and health sciences fields dealing with biologically active compounds, natural products, and medicines, while BPB deals with a wide range of biological topics in the pharmaceutical and health sciences fields including scientific research from basic to clinical studies. For details of their respective scopes, please refer to the submission topic categories below. Topics: Organic chemistry In silico science Inorganic chemistry Pharmacognosy Health statistics Forensic science Biochemistry Pharmacology Pharmaceutical care and science Medicinal chemistry Analytical chemistry Physical pharmacy Natural product chemistry Toxicology Environmental science Molecular and cellular biology Biopharmacy and pharmacokinetics Pharmaceutical education Chemical biology Physical chemistry Pharmaceutical engineering Epidemiology Hygiene Regulatory science Immunology and microbiology Clinical pharmacy Miscellaneous.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信