{"title":"Assessment of the chemical pre-treatment methods for the delignification of sugarcane bagasse.","authors":"Jaspreet Kaur, Monica Sachdeva Taggar, Anu Kalia, Gulzar Singh Sanghera, Sunil Kumar Khatkar, Pranav Vashisht, Lovepreet Singh","doi":"10.1080/09593330.2025.2464265","DOIUrl":null,"url":null,"abstract":"<p><p>For the extraction of sugars and their subsequent conversion into ethanol, removing lignin from sugarcane bagasse is a major challenge attributed to its recalcitrant nature. This study compares the efficacy of green deep eutectic solvents with conventional acid/alkali pre-treatments for the delignification of sugarcane bagasse. Among different deep eutectic solvent pre-treatments, the maximum removal of lignin i.e. 77.37% was reported when bagasse was treated with choline chloride: formic acid (1:2) for 6 h. The comparison between deep eutectic solvents and conventional acid/alkali pretreatments revealed that acid (H<sub>2</sub>SO<sub>4</sub>) pre-treatment showed no significant reduction in lignin content. However, the alkaline pre-treatment with 1 M NaOH for 60 min resulted in significant removal of lignin content (83.17%) from bagasse compared to deep eutectic solvent pre-treatment. Fourier transform infrared spectroscopy and scanning electron microscopic results of bagasse indicated significant structural alterations after the pre-treatment. The saccharification of alkali-pretreated bagasse with in-house cellulase resulted in a maximum reducing sugar concentration of 54.50 g/L with a hydrolytic efficiency of 67.01%. The batch fermentation of bagasse hydrolysate with <i>Saccharomyces cerevisiae</i> resulted in an ethanol concentration of 9.55 g/L with a fermentation efficiency of 53.81%. This study made a median attempt to identify an effective pre-treatment method to delignifying sugarcane bagasse, ultimately enhancing the enzymatic accessibility and increasing the efficiency of cellulose hydrolysis into fermentable sugars.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"3363-3373"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2025.2464265","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
For the extraction of sugars and their subsequent conversion into ethanol, removing lignin from sugarcane bagasse is a major challenge attributed to its recalcitrant nature. This study compares the efficacy of green deep eutectic solvents with conventional acid/alkali pre-treatments for the delignification of sugarcane bagasse. Among different deep eutectic solvent pre-treatments, the maximum removal of lignin i.e. 77.37% was reported when bagasse was treated with choline chloride: formic acid (1:2) for 6 h. The comparison between deep eutectic solvents and conventional acid/alkali pretreatments revealed that acid (H2SO4) pre-treatment showed no significant reduction in lignin content. However, the alkaline pre-treatment with 1 M NaOH for 60 min resulted in significant removal of lignin content (83.17%) from bagasse compared to deep eutectic solvent pre-treatment. Fourier transform infrared spectroscopy and scanning electron microscopic results of bagasse indicated significant structural alterations after the pre-treatment. The saccharification of alkali-pretreated bagasse with in-house cellulase resulted in a maximum reducing sugar concentration of 54.50 g/L with a hydrolytic efficiency of 67.01%. The batch fermentation of bagasse hydrolysate with Saccharomyces cerevisiae resulted in an ethanol concentration of 9.55 g/L with a fermentation efficiency of 53.81%. This study made a median attempt to identify an effective pre-treatment method to delignifying sugarcane bagasse, ultimately enhancing the enzymatic accessibility and increasing the efficiency of cellulose hydrolysis into fermentable sugars.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current