RNA-protein interaction prediction using network-guided deep learning.

IF 5.2 1区 生物学 Q1 BIOLOGY
Haoquan Liu, Yiren Jian, Chen Zeng, Yunjie Zhao
{"title":"RNA-protein interaction prediction using network-guided deep learning.","authors":"Haoquan Liu, Yiren Jian, Chen Zeng, Yunjie Zhao","doi":"10.1038/s42003-025-07694-9","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate computational determination of RNA-protein interactions remains challenging, particularly when encountering unknown RNAs and proteins. The limited number of RNAs and their flexibility constrained the effectiveness of the deep-learning models for RNA-protein interaction prediction. Here, we introduce ZHMolGraph, which integrates graph neural network and unsupervised large language models to predict RNA-protein interaction. We validate ZHMolGraph predictions on two benchmark datasets and outperform the current best methods. For the dataset of entirely unknown RNAs and proteins, ZHMolGraph shows an improvement in achieving high AUROC of 79.8% and AUPRC of 82.0%. This represents a substantial improvement of 7.1%-28.7% in AUROC and 4.6%-30.0% in AUPRC over other methods. We utilize ZHMolGraph to enhance the challenging SARS-CoV-2 RPI and unbound RNA-protein complex predictions. Such enhancements make ZHMolGraph a reliable option for genome-wide RNA-protein prediction. ZHMolGraph holds broad potential for modeling and designing RNA-protein complexes.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"247"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830795/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07694-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate computational determination of RNA-protein interactions remains challenging, particularly when encountering unknown RNAs and proteins. The limited number of RNAs and their flexibility constrained the effectiveness of the deep-learning models for RNA-protein interaction prediction. Here, we introduce ZHMolGraph, which integrates graph neural network and unsupervised large language models to predict RNA-protein interaction. We validate ZHMolGraph predictions on two benchmark datasets and outperform the current best methods. For the dataset of entirely unknown RNAs and proteins, ZHMolGraph shows an improvement in achieving high AUROC of 79.8% and AUPRC of 82.0%. This represents a substantial improvement of 7.1%-28.7% in AUROC and 4.6%-30.0% in AUPRC over other methods. We utilize ZHMolGraph to enhance the challenging SARS-CoV-2 RPI and unbound RNA-protein complex predictions. Such enhancements make ZHMolGraph a reliable option for genome-wide RNA-protein prediction. ZHMolGraph holds broad potential for modeling and designing RNA-protein complexes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信