Estimation of heart rate and respiratory rate by fore-background spatiotemporal modeling of videos.

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2025-01-30 eCollection Date: 2025-02-01 DOI:10.1364/BOE.546968
Xiujuan Zheng, Wenqin Yan, Boxiang Liu, Yue Ivan Wu, Haiyan Tu
{"title":"Estimation of heart rate and respiratory rate by fore-background spatiotemporal modeling of videos.","authors":"Xiujuan Zheng, Wenqin Yan, Boxiang Liu, Yue Ivan Wu, Haiyan Tu","doi":"10.1364/BOE.546968","DOIUrl":null,"url":null,"abstract":"<p><p>Heart rate (HR) and respiratory rate (RR) are two critical physiological parameters that can be estimated from video recordings. However, the accuracy of remote estimation of HR and RR is affected by fluctuations in ambient illumination. To address this adverse effect, we propose a fore-background spatiotemporal (FBST) method for estimating HR and RR from videos captured by consumer-grade cameras. Initially, we identify the foreground regions of interest (ROIs) on the face and chest, as well as the background ROIs in non-body areas of the videos. Subsequently, we construct the foreground and background spatiotemporal maps based on the dichromatic reflectance model. We then introduce a lightweight network equipped with adaptive spatiotemporal layers to process the spatiotemporal maps and automatically generate a feature map of the non-illumination perturbation pulses. This feature map serves as input to a ResNet-18 network to estimate the physiological rhythm. Finally, we extract pulse signals and estimate HR and RR concurrently. Experiments conducted on three public and one private dataset demonstrate the superiority of the proposed FBST method in terms of accuracy and computational efficiency. These findings provide novel insights into non-intrusive human physiological measurements using common devices.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 2","pages":"760-777"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828443/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.546968","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Heart rate (HR) and respiratory rate (RR) are two critical physiological parameters that can be estimated from video recordings. However, the accuracy of remote estimation of HR and RR is affected by fluctuations in ambient illumination. To address this adverse effect, we propose a fore-background spatiotemporal (FBST) method for estimating HR and RR from videos captured by consumer-grade cameras. Initially, we identify the foreground regions of interest (ROIs) on the face and chest, as well as the background ROIs in non-body areas of the videos. Subsequently, we construct the foreground and background spatiotemporal maps based on the dichromatic reflectance model. We then introduce a lightweight network equipped with adaptive spatiotemporal layers to process the spatiotemporal maps and automatically generate a feature map of the non-illumination perturbation pulses. This feature map serves as input to a ResNet-18 network to estimate the physiological rhythm. Finally, we extract pulse signals and estimate HR and RR concurrently. Experiments conducted on three public and one private dataset demonstrate the superiority of the proposed FBST method in terms of accuracy and computational efficiency. These findings provide novel insights into non-intrusive human physiological measurements using common devices.

基于视频前背景时空建模的心率和呼吸率估计。
心率(HR)和呼吸频率(RR)是两个关键的生理参数,可以从视频记录估计。然而,距离比和距离比的远程估计精度受到环境光照波动的影响。为了解决这一不利影响,我们提出了一种前背景时空(FBST)方法,用于从消费级相机拍摄的视频中估计HR和RR。首先,我们确定了人脸和胸部的前景感兴趣区域(roi),以及视频中非身体区域的背景roi。随后,我们基于二色反射模型构建了前景和背景时空图。然后,我们引入了一个配备自适应时空层的轻量级网络来处理时空图,并自动生成非照明扰动脉冲的特征图。该特征图作为ResNet-18网络的输入来估计生理节律。最后,提取脉冲信号,同时估计HR和RR。在三个公共数据集和一个私有数据集上进行的实验表明,本文提出的FBST方法在精度和计算效率方面具有优越性。这些发现为使用普通设备进行非侵入性人体生理测量提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信