Enabling real-time reconstruction for large field-of-view single-molecule localization microscopy using discrete field-dependent point-spread function.

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2025-01-28 eCollection Date: 2025-02-01 DOI:10.1364/BOE.545534
Jun Lu, Lei Xu, Shuyao Liao, Wei Wang, Biqin Dong
{"title":"Enabling real-time reconstruction for large field-of-view single-molecule localization microscopy using discrete field-dependent point-spread function.","authors":"Jun Lu, Lei Xu, Shuyao Liao, Wei Wang, Biqin Dong","doi":"10.1364/BOE.545534","DOIUrl":null,"url":null,"abstract":"<p><p>Single-molecule localization microscopy (SMLM) is a powerful super-resolution imaging technique that offers resolution far beyond the optical diffraction limit. The commonly used high numerical-aperture (NA) objective lenses in SMLM can only provide a nearly ideal point-spread function (PSF) at the center of the field-of-view (FOV), whereas the off-axis PSF is often distorted due to optical aberrations. Since precision and accuracy of three-dimensional (3D) spatial localization of single molecules heavily depend on the system's PSF, the FOV of 3D SMLM is often restricted to about 50 µm × 50 µm limiting its applications in visualizing intra-/intercellular interactions and high-throughput single-molecule analysis. Here we present a systematic study to show the influence of optical aberrations on large FOV 3D SMLM using unmodified, astigmatic, and double-helix PSFs. Our results show that optical aberrations introduce significant localization errors during image reconstruction and thereby produce unreliable imaging results at the corner of the FOV. To maximize SMLM's FOV, we proposed and verified the potential of using discrete field-dependent PSFs to retain precise and accurate single-molecule localization and compare their reconstruction results using simulated resolution test patterns and biological structures. Moreover, GPU acceleration empowers a discrete PSF calibration model with high localization speed, which can provide real-time SMLM image reconstruction. We envision these results will further guide the development of strategies that can provide real-time and reliable image reconstruction in large FOV 3D SMLM.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 2","pages":"718-735"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828444/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.545534","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Single-molecule localization microscopy (SMLM) is a powerful super-resolution imaging technique that offers resolution far beyond the optical diffraction limit. The commonly used high numerical-aperture (NA) objective lenses in SMLM can only provide a nearly ideal point-spread function (PSF) at the center of the field-of-view (FOV), whereas the off-axis PSF is often distorted due to optical aberrations. Since precision and accuracy of three-dimensional (3D) spatial localization of single molecules heavily depend on the system's PSF, the FOV of 3D SMLM is often restricted to about 50 µm × 50 µm limiting its applications in visualizing intra-/intercellular interactions and high-throughput single-molecule analysis. Here we present a systematic study to show the influence of optical aberrations on large FOV 3D SMLM using unmodified, astigmatic, and double-helix PSFs. Our results show that optical aberrations introduce significant localization errors during image reconstruction and thereby produce unreliable imaging results at the corner of the FOV. To maximize SMLM's FOV, we proposed and verified the potential of using discrete field-dependent PSFs to retain precise and accurate single-molecule localization and compare their reconstruction results using simulated resolution test patterns and biological structures. Moreover, GPU acceleration empowers a discrete PSF calibration model with high localization speed, which can provide real-time SMLM image reconstruction. We envision these results will further guide the development of strategies that can provide real-time and reliable image reconstruction in large FOV 3D SMLM.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信