Three-dimensional monitoring of RBC sedimentation in external magnetic fields.

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2025-01-29 eCollection Date: 2025-02-01 DOI:10.1364/BOE.545723
Kowsar Gholampour, Ali-Reza Moradi
{"title":"Three-dimensional monitoring of RBC sedimentation in external magnetic fields.","authors":"Kowsar Gholampour, Ali-Reza Moradi","doi":"10.1364/BOE.545723","DOIUrl":null,"url":null,"abstract":"<p><p>The external magnetic fields resulting from electronic devices around humans have become more prevalent nowadays, and studying their influence on living matter is a required task. Here, we experimentally model the movement of RBCs in veins under an external magnetic field; we monitor the sedimentation of multiple RBCs at different distances from a surrounding wall. The monitoring is performed in 3D by incorporation of digital holographic microscopy (DHM). DHM not only provides a 3D quantitative phase image of an RBC but also, through its numerical refocusing feature, 3D trajectories of several cells in the field of view can be obtained. Our results show that the magnetic field facilitates the sedimentation of cells, and the effect is higher in proximity to the walls. This influence is attributed to the presence of magnetic field-sensitive materials included in RBCs.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 2","pages":"736-747"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828455/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.545723","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The external magnetic fields resulting from electronic devices around humans have become more prevalent nowadays, and studying their influence on living matter is a required task. Here, we experimentally model the movement of RBCs in veins under an external magnetic field; we monitor the sedimentation of multiple RBCs at different distances from a surrounding wall. The monitoring is performed in 3D by incorporation of digital holographic microscopy (DHM). DHM not only provides a 3D quantitative phase image of an RBC but also, through its numerical refocusing feature, 3D trajectories of several cells in the field of view can be obtained. Our results show that the magnetic field facilitates the sedimentation of cells, and the effect is higher in proximity to the walls. This influence is attributed to the presence of magnetic field-sensitive materials included in RBCs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信