Lucas Kreiss, Weiheng Tang, Ramana Balla, Xi Yang, Amey Chaware, Kanghyun Kim, Clare B Cook, Aurelien Begue, Clay Dugo, Mark Harfouche, Kevin C Zhou, Roarke Horstmeyer
{"title":"Recording dynamic facial micro-expressions with a multi-focus camera array.","authors":"Lucas Kreiss, Weiheng Tang, Ramana Balla, Xi Yang, Amey Chaware, Kanghyun Kim, Clare B Cook, Aurelien Begue, Clay Dugo, Mark Harfouche, Kevin C Zhou, Roarke Horstmeyer","doi":"10.1364/BOE.547944","DOIUrl":null,"url":null,"abstract":"<p><p>We present a multi-camera array for capturing dynamic high-resolution videos of the human face. Compared to traditional single-camera configurations, our array of 54 individual cameras allows stitching of high-resolution composite video frames (709 megapixels total). In our novel multi-focus strategy, each camera in the array focuses on a unique object plane to resolve non-planar surfaces at a higher resolution than a standard single-lens camera design. By overcoming the standard resolution and depth-of-field (DOF) tradeoffs, we use our array design to capture video of macroscopically curved surfaces such as the human face at a lateral resolution of 26.14 ± 5.8 µm across a composite DOF of ∼43 mm that covers the entire face (85 cm<sup>2</sup>+ FOV). Compared to a single-focus configuration, this is almost a 10-fold increase in effective DOF. We demonstrate how our multi-focus camera array can capture dynamic facial expressions at microscopic resolution with relevance in several biomedical applications.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 2","pages":"617-627"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828449/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.547944","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a multi-camera array for capturing dynamic high-resolution videos of the human face. Compared to traditional single-camera configurations, our array of 54 individual cameras allows stitching of high-resolution composite video frames (709 megapixels total). In our novel multi-focus strategy, each camera in the array focuses on a unique object plane to resolve non-planar surfaces at a higher resolution than a standard single-lens camera design. By overcoming the standard resolution and depth-of-field (DOF) tradeoffs, we use our array design to capture video of macroscopically curved surfaces such as the human face at a lateral resolution of 26.14 ± 5.8 µm across a composite DOF of ∼43 mm that covers the entire face (85 cm2+ FOV). Compared to a single-focus configuration, this is almost a 10-fold increase in effective DOF. We demonstrate how our multi-focus camera array can capture dynamic facial expressions at microscopic resolution with relevance in several biomedical applications.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.