Uncovering endothelial to mesenchymal transition drivers in atherosclerosis via multi-omics analysis.

IF 2 3区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
Qingyan Huang, Yuhong Gan, Xiaoqi Zheng, Zhikang Yu, Qionghui Huang, Mingfeng Huang
{"title":"Uncovering endothelial to mesenchymal transition drivers in atherosclerosis via multi-omics analysis.","authors":"Qingyan Huang, Yuhong Gan, Xiaoqi Zheng, Zhikang Yu, Qionghui Huang, Mingfeng Huang","doi":"10.1186/s12872-025-04571-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to identify novel candidates that regulate Endothelial to mesenchymal transition(EndMT) in atherosclerosis by integrating multi-omics data.</p><p><strong>Methods: </strong>The single-cell RNA sequencing (scRNA-seq) dataset GSE159677, bulk RNA-seq dataset GSE118446 and microarray dataset GSE56309 were obtained from the Gene Expression Omnibus (GEO) database. The uniform manifold approximation and projection (UMAP) were used for downscaling and cluster identification. Differentially expressed genes (DEGs) from GSE118446 and GSE56309 were analyzed using limma package. Functional enrichment analysis was applied by DAVID functional annotation tool. Quantitative real-time polymerase chain reaction (qPCR) and western blotting were used for further validation.</p><p><strong>Results: </strong>Nine endothelial cell (EC) clusters were identified in human plaques, with EC cluster 5 exhibiting an EndMT phenotype. The intersection of genes from EC cluster 5 and common DEGs in vitro EndMT models revealed seven mesenchymal candidates: PTGS2, TPM1, SERPINE1, FN1, RASD1, SEMA3C, and ESM1. Validation of these findings was carried out through qPCR analysis.</p><p><strong>Conclusion: </strong>Through the integration of multi-omics data using bioinformatics methods, our study identified seven novel EndMT candidates: PTGS2, TPM1, SERPINE1, FN1, RASD1, SEMA3C, and ESM1.</p>","PeriodicalId":9195,"journal":{"name":"BMC Cardiovascular Disorders","volume":"25 1","pages":"104"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Cardiovascular Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12872-025-04571-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study aimed to identify novel candidates that regulate Endothelial to mesenchymal transition(EndMT) in atherosclerosis by integrating multi-omics data.

Methods: The single-cell RNA sequencing (scRNA-seq) dataset GSE159677, bulk RNA-seq dataset GSE118446 and microarray dataset GSE56309 were obtained from the Gene Expression Omnibus (GEO) database. The uniform manifold approximation and projection (UMAP) were used for downscaling and cluster identification. Differentially expressed genes (DEGs) from GSE118446 and GSE56309 were analyzed using limma package. Functional enrichment analysis was applied by DAVID functional annotation tool. Quantitative real-time polymerase chain reaction (qPCR) and western blotting were used for further validation.

Results: Nine endothelial cell (EC) clusters were identified in human plaques, with EC cluster 5 exhibiting an EndMT phenotype. The intersection of genes from EC cluster 5 and common DEGs in vitro EndMT models revealed seven mesenchymal candidates: PTGS2, TPM1, SERPINE1, FN1, RASD1, SEMA3C, and ESM1. Validation of these findings was carried out through qPCR analysis.

Conclusion: Through the integration of multi-omics data using bioinformatics methods, our study identified seven novel EndMT candidates: PTGS2, TPM1, SERPINE1, FN1, RASD1, SEMA3C, and ESM1.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Cardiovascular Disorders
BMC Cardiovascular Disorders CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
3.50
自引率
0.00%
发文量
480
审稿时长
1 months
期刊介绍: BMC Cardiovascular Disorders is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of disorders of the heart and circulatory system, as well as related molecular and cell biology, genetics, pathophysiology, epidemiology, and controlled trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信