{"title":"Combining experimental and observational data through a power likelihood.","authors":"Xi Lin, Jens Magelund Tarp, Robin J Evans","doi":"10.1093/biomtc/ujaf008","DOIUrl":null,"url":null,"abstract":"<p><p>Randomized controlled trials are the gold standard for causal inference and play a pivotal role in modern evidence-based medicine. However, the sample sizes they use are often too limited to provide adequate power for drawing causal conclusions. In contrast, observational data are becoming increasingly accessible in large volumes but can be subject to bias as a result of hidden confounding. Given these complementary features, we propose a power likelihood approach to augmenting randomized controlled trials with observational data to improve the efficiency of treatment effect estimation. We provide a data-adaptive procedure for maximizing the expected log predictive density (ELPD) to select the learning rate that best regulates the information from the observational data. We validate our method through a simulation study that shows increased power while maintaining an approximate nominal coverage rate. Finally, we apply our method in a real-world data fusion study augmenting the PIONEER 6 clinical trial with a US health claims dataset, demonstrating the effectiveness of our method and providing detailed guidance on how to address practical considerations in its application.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Randomized controlled trials are the gold standard for causal inference and play a pivotal role in modern evidence-based medicine. However, the sample sizes they use are often too limited to provide adequate power for drawing causal conclusions. In contrast, observational data are becoming increasingly accessible in large volumes but can be subject to bias as a result of hidden confounding. Given these complementary features, we propose a power likelihood approach to augmenting randomized controlled trials with observational data to improve the efficiency of treatment effect estimation. We provide a data-adaptive procedure for maximizing the expected log predictive density (ELPD) to select the learning rate that best regulates the information from the observational data. We validate our method through a simulation study that shows increased power while maintaining an approximate nominal coverage rate. Finally, we apply our method in a real-world data fusion study augmenting the PIONEER 6 clinical trial with a US health claims dataset, demonstrating the effectiveness of our method and providing detailed guidance on how to address practical considerations in its application.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.