Neural network powered microscopic system for cataract surgery.

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2025-01-14 eCollection Date: 2025-02-01 DOI:10.1364/BOE.542436
Yuxuan Zhai, Chunsheng Ji, Yaqi Wang, Chao Qu, Chong He, Fang Lu, Lin Huang, Junhong Li, Zaowen Wang, Xiao Zhang, Xufeng Zhao, Weihong Yu, Xiaogang Wang, Zhao Wang
{"title":"Neural network powered microscopic system for cataract surgery.","authors":"Yuxuan Zhai, Chunsheng Ji, Yaqi Wang, Chao Qu, Chong He, Fang Lu, Lin Huang, Junhong Li, Zaowen Wang, Xiao Zhang, Xufeng Zhao, Weihong Yu, Xiaogang Wang, Zhao Wang","doi":"10.1364/BOE.542436","DOIUrl":null,"url":null,"abstract":"<p><p>Phacoemulsification with intraocular lens (IOL) implantation is a widely used effective treatment for cataracts. However, the surgical outcome relies heavily on precise operations with marked eye location and orientation, which ideally require a high-precision navigation system for complete guidance of surgical procedure. However, both research and current commercial surgical microscopes still face substantial challenges in handling various complex clinical scenarios. Here we propose a neural network-powered surgical microscopic system that can benefit from big data to address the unmet clinical need. In this system, we designed an end-to-end navigation network for real-time positioning and alignment of IOL and then built a computer-assisted surgical microscope with a complete imaging and display platform integrating the control software and algorithms for surgical planning and navigation. The network used an attention-based encoder-decoder architecture with an edge padding mechanism and an MLP layer for eye center localization, and combined siamese network, correlation filter, and spatial transformation network to track eye rotation. Using computer-aided annotation, we collected and labeled 100 clinical surgery videos from 100 patients, and proposed a data augmentation method to enhance the diversity of training. We further evaluated the navigation performance of the microscopic system on a human eye model.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 2","pages":"535-552"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828452/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.542436","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Phacoemulsification with intraocular lens (IOL) implantation is a widely used effective treatment for cataracts. However, the surgical outcome relies heavily on precise operations with marked eye location and orientation, which ideally require a high-precision navigation system for complete guidance of surgical procedure. However, both research and current commercial surgical microscopes still face substantial challenges in handling various complex clinical scenarios. Here we propose a neural network-powered surgical microscopic system that can benefit from big data to address the unmet clinical need. In this system, we designed an end-to-end navigation network for real-time positioning and alignment of IOL and then built a computer-assisted surgical microscope with a complete imaging and display platform integrating the control software and algorithms for surgical planning and navigation. The network used an attention-based encoder-decoder architecture with an edge padding mechanism and an MLP layer for eye center localization, and combined siamese network, correlation filter, and spatial transformation network to track eye rotation. Using computer-aided annotation, we collected and labeled 100 clinical surgery videos from 100 patients, and proposed a data augmentation method to enhance the diversity of training. We further evaluated the navigation performance of the microscopic system on a human eye model.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信