Neural network powered microscopic system for cataract surgery.

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2025-01-14 eCollection Date: 2025-02-01 DOI:10.1364/BOE.542436
Yuxuan Zhai, Chunsheng Ji, Yaqi Wang, Chao Qu, Chong He, Fang Lu, Lin Huang, Junhong Li, Zaowen Wang, Xiao Zhang, Xufeng Zhao, Weihong Yu, Xiaogang Wang, Zhao Wang
{"title":"Neural network powered microscopic system for cataract surgery.","authors":"Yuxuan Zhai, Chunsheng Ji, Yaqi Wang, Chao Qu, Chong He, Fang Lu, Lin Huang, Junhong Li, Zaowen Wang, Xiao Zhang, Xufeng Zhao, Weihong Yu, Xiaogang Wang, Zhao Wang","doi":"10.1364/BOE.542436","DOIUrl":null,"url":null,"abstract":"<p><p>Phacoemulsification with intraocular lens (IOL) implantation is a widely used effective treatment for cataracts. However, the surgical outcome relies heavily on precise operations with marked eye location and orientation, which ideally require a high-precision navigation system for complete guidance of surgical procedure. However, both research and current commercial surgical microscopes still face substantial challenges in handling various complex clinical scenarios. Here we propose a neural network-powered surgical microscopic system that can benefit from big data to address the unmet clinical need. In this system, we designed an end-to-end navigation network for real-time positioning and alignment of IOL and then built a computer-assisted surgical microscope with a complete imaging and display platform integrating the control software and algorithms for surgical planning and navigation. The network used an attention-based encoder-decoder architecture with an edge padding mechanism and an MLP layer for eye center localization, and combined siamese network, correlation filter, and spatial transformation network to track eye rotation. Using computer-aided annotation, we collected and labeled 100 clinical surgery videos from 100 patients, and proposed a data augmentation method to enhance the diversity of training. We further evaluated the navigation performance of the microscopic system on a human eye model.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 2","pages":"535-552"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828452/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.542436","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Phacoemulsification with intraocular lens (IOL) implantation is a widely used effective treatment for cataracts. However, the surgical outcome relies heavily on precise operations with marked eye location and orientation, which ideally require a high-precision navigation system for complete guidance of surgical procedure. However, both research and current commercial surgical microscopes still face substantial challenges in handling various complex clinical scenarios. Here we propose a neural network-powered surgical microscopic system that can benefit from big data to address the unmet clinical need. In this system, we designed an end-to-end navigation network for real-time positioning and alignment of IOL and then built a computer-assisted surgical microscope with a complete imaging and display platform integrating the control software and algorithms for surgical planning and navigation. The network used an attention-based encoder-decoder architecture with an edge padding mechanism and an MLP layer for eye center localization, and combined siamese network, correlation filter, and spatial transformation network to track eye rotation. Using computer-aided annotation, we collected and labeled 100 clinical surgery videos from 100 patients, and proposed a data augmentation method to enhance the diversity of training. We further evaluated the navigation performance of the microscopic system on a human eye model.

用于白内障手术的神经网络显微系统。
白内障超声乳化术联合人工晶状体植入术是目前广泛应用的一种治疗白内障的有效方法。然而,手术结果在很大程度上依赖于精确的手术和明确的眼睛位置和方向,这需要高精度的导航系统来完全指导手术过程。然而,研究和目前的商业手术显微镜在处理各种复杂的临床情况时仍然面临着实质性的挑战。在这里,我们提出了一个神经网络驱动的手术显微系统,可以从大数据中受益,以解决未满足的临床需求。在该系统中,我们设计了一个端到端的导航网络,用于人工晶状体的实时定位和对准,然后构建了一个计算机辅助手术显微镜,该显微镜具有完整的成像和显示平台,集成了控制软件和算法,用于手术计划和导航。该网络采用基于注意力的编码器-解码器架构,采用边缘填充机制和MLP层进行眼中心定位,并结合连体网络、相关滤波器和空间变换网络进行眼旋转跟踪。采用计算机辅助标注的方法,对100例患者的100个临床手术视频进行了收集和标注,并提出了一种数据增强方法,以增强训练的多样性。我们进一步在人眼模型上评估了显微系统的导航性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信