Running to remember: The effects of exercise on perineuronal nets, microglia, and hippocampal angiogenesis in female and male mice.

IF 2.6 3区 心理学 Q2 BEHAVIORAL SCIENCES
Madeleine G Maheu, Noah James, Zach Clark, Alex Yang, Ridhi Patel, Shawn M Beaudette, Rebecca E K MacPherson, Paula Duarte-Guterman
{"title":"Running to remember: The effects of exercise on perineuronal nets, microglia, and hippocampal angiogenesis in female and male mice.","authors":"Madeleine G Maheu, Noah James, Zach Clark, Alex Yang, Ridhi Patel, Shawn M Beaudette, Rebecca E K MacPherson, Paula Duarte-Guterman","doi":"10.1016/j.bbr.2025.115478","DOIUrl":null,"url":null,"abstract":"<p><p>Exercise is accepted as a positive health behaviour; however, the mechanisms of exercise on neuroprotection and cognitive health are not completely understood. The purpose of this study was to explore the neurobiological benefits of chronic treadmill exercise in female and male mice through its role in microglial content and morphology, cerebral vascularization, and perineuronal net (PNN) expression. We further examined how these neurobiological changes relate to spatial memory outcomes. Adult mice were assigned to a sedentary or treadmill exercise group for eight weeks. During the final week, all mice were trained on a spatial memory task (Barnes maze) and brains were collected for immunohistochemistry. Exercised mice made fewer errors than sedentary mice during the first two days of training and probe trial. Females, regardless of exercise training, made fewer errors during Barnes maze training and demonstrated a greater frequency of spatial strategy use compared to males. Exercised mice, regardless of sex, had fewer PNNs in the dentate gyrus of the hippocampus compared to sedentary controls. The number of PNNs in the dorsal dentate gyrus was positively correlated with total errors during training. During the probe, greater errors correlated with more PNNs among the exercised group only. Microglia count and cerebral vascularization were not affected by exercise, although proportions of microglia type (ameboid, stout/thick, and thick/thin) were regulated by exercise in the ventral dentate gyrus. We conclude that exercise decreases PNNs in the dentate gyrus in both sexes and this may be related to better spatial learning and memory.</p>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":" ","pages":"115478"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.bbr.2025.115478","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Exercise is accepted as a positive health behaviour; however, the mechanisms of exercise on neuroprotection and cognitive health are not completely understood. The purpose of this study was to explore the neurobiological benefits of chronic treadmill exercise in female and male mice through its role in microglial content and morphology, cerebral vascularization, and perineuronal net (PNN) expression. We further examined how these neurobiological changes relate to spatial memory outcomes. Adult mice were assigned to a sedentary or treadmill exercise group for eight weeks. During the final week, all mice were trained on a spatial memory task (Barnes maze) and brains were collected for immunohistochemistry. Exercised mice made fewer errors than sedentary mice during the first two days of training and probe trial. Females, regardless of exercise training, made fewer errors during Barnes maze training and demonstrated a greater frequency of spatial strategy use compared to males. Exercised mice, regardless of sex, had fewer PNNs in the dentate gyrus of the hippocampus compared to sedentary controls. The number of PNNs in the dorsal dentate gyrus was positively correlated with total errors during training. During the probe, greater errors correlated with more PNNs among the exercised group only. Microglia count and cerebral vascularization were not affected by exercise, although proportions of microglia type (ameboid, stout/thick, and thick/thin) were regulated by exercise in the ventral dentate gyrus. We conclude that exercise decreases PNNs in the dentate gyrus in both sexes and this may be related to better spatial learning and memory.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Behavioural Brain Research
Behavioural Brain Research 医学-行为科学
CiteScore
5.60
自引率
0.00%
发文量
383
审稿时长
61 days
期刊介绍: Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信