KIF11 Inhibition Induces Retinopathy Progression by Affecting Photoreceptor Cell Ciliogenesis and Cell Cycle Regulation in Development.

IF 3.2 3区 生物学 Q3 MATERIALS SCIENCE, BIOMATERIALS
Yue Xu, Jie Chen, Xin-Yao Wang, Min-Hui Huang, Xiang Wei, Xin-Rui Luo, Ya-Lan Wei, Zhen-Yu She
{"title":"KIF11 Inhibition Induces Retinopathy Progression by Affecting Photoreceptor Cell Ciliogenesis and Cell Cycle Regulation in Development.","authors":"Yue Xu, Jie Chen, Xin-Yao Wang, Min-Hui Huang, Xiang Wei, Xin-Rui Luo, Ya-Lan Wei, Zhen-Yu She","doi":"10.1002/adbi.202400748","DOIUrl":null,"url":null,"abstract":"<p><p>Microcephaly with or without chorioretinopathy, lymphedema, or impaired intellectual development (MCLMR; OMIM 152950) is a rare autosomal dominant disorder, which is primarily characterized by defects in the central nervous system and retinal developmental anomalies. Kinesin-5 KIF11 has been discovered as a major causative gene for MCLMR. It has been well established that KIF11 is essential for microtubule organization, centrosome separation, and spindle assembly during mitosis. However, cellular and molecular mechanisms in the physiopathology of MCLMR remain largely unknown. In this study, KIF11-inhibition mouse models are generated, which reveal that chemical inhibition of KIF11 results in defects in retinal development, the formation of rosettes, photoreceptor ciliary alterations, and vision loss. Furthermore, it is demonstrated that KIF11 is essential for the formation, organization, and maintenance of primary cilia in photoreceptor cells, which further contributes to the organization of photoreceptor cells and the development of the retina. Using the developing mouse embryos as a model, it is revealed that KIF11 inhibition induces the formation of monopolar spindle and mitotic arrest, which further results in tetraploidy and apoptotic cell death. These findings uncover cellular mechanisms underlying the loss-of-function of KIF11 and retinopathy in MCLMR and further support the functions of KIF11 in development.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":" ","pages":"e2400748"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/adbi.202400748","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Microcephaly with or without chorioretinopathy, lymphedema, or impaired intellectual development (MCLMR; OMIM 152950) is a rare autosomal dominant disorder, which is primarily characterized by defects in the central nervous system and retinal developmental anomalies. Kinesin-5 KIF11 has been discovered as a major causative gene for MCLMR. It has been well established that KIF11 is essential for microtubule organization, centrosome separation, and spindle assembly during mitosis. However, cellular and molecular mechanisms in the physiopathology of MCLMR remain largely unknown. In this study, KIF11-inhibition mouse models are generated, which reveal that chemical inhibition of KIF11 results in defects in retinal development, the formation of rosettes, photoreceptor ciliary alterations, and vision loss. Furthermore, it is demonstrated that KIF11 is essential for the formation, organization, and maintenance of primary cilia in photoreceptor cells, which further contributes to the organization of photoreceptor cells and the development of the retina. Using the developing mouse embryos as a model, it is revealed that KIF11 inhibition induces the formation of monopolar spindle and mitotic arrest, which further results in tetraploidy and apoptotic cell death. These findings uncover cellular mechanisms underlying the loss-of-function of KIF11 and retinopathy in MCLMR and further support the functions of KIF11 in development.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced biology
Advanced biology Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
6.60
自引率
0.00%
发文量
130
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信