Yeast Cell Wall-Mediated Ileal Targeted Delivery System for IgA Nepharopathy Therapy.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Chaoying Tian, Mei Yan, Jialing Guo, Yingying Zhou, Bin Du, Genyang Cheng
{"title":"Yeast Cell Wall-Mediated Ileal Targeted Delivery System for IgA Nepharopathy Therapy.","authors":"Chaoying Tian, Mei Yan, Jialing Guo, Yingying Zhou, Bin Du, Genyang Cheng","doi":"10.1021/acsbiomaterials.4c01941","DOIUrl":null,"url":null,"abstract":"<p><p>IgA nephropathy (IgAN) is a primary glomerulonephritis mediated by autoimmunity, characterized by an abnormal increase and the deposition of IgA in the glomeruli. In recent years, most studies have emphasized the crucial role of the gut-kidney axis in the pathogenesis of IgA nephropathy, and the ileal Peyer patches in the intestinal mucosal immune system are the main site for IgA production. Therefore, in this study, hydroxychloroquine (HCQ) and dexamethasone (DXM) were used as model drugs, and yeast cell wall (YCW)-coated oleic acid-grafted chitosan (CSO) was used as a carrier to construct a yeast cell wall oral drug delivery system HCQ/DXM@CSO@YCW. This delivery system achieves ileal targeted delivery through the yeast cell wall (YCW), reduces IgA production, and synergistically regulates the inflammatory pathological environment. The delivery system had good gastrointestinal stability and biocompatibility. <i>In vitro</i> cell experiments had shown the targeted uptake ability of dendritic cells and macrophages, and <i>in vitro</i> intestinal experiments showed that the YCW has ileal targeting properties. <i>In vivo</i> pharmacodynamic experiments showed that the HCQ/DXM@CSO@YCW delivery system could significantly reduce the serum IgA levels and IgA deposition in the renal tissue of IgAN mice, as well as the levels of IL-6, TNF-α, and TGF-β in the renal tissue, improving the pathological morphology of the renal tissue. Therefore, the DXM/HCQ@CSO@YCW oral administration system provided a new intestinal targeted delivery platform for intestinal mucosal immunotherapy in IgA nephropathy.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01941","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

IgA nephropathy (IgAN) is a primary glomerulonephritis mediated by autoimmunity, characterized by an abnormal increase and the deposition of IgA in the glomeruli. In recent years, most studies have emphasized the crucial role of the gut-kidney axis in the pathogenesis of IgA nephropathy, and the ileal Peyer patches in the intestinal mucosal immune system are the main site for IgA production. Therefore, in this study, hydroxychloroquine (HCQ) and dexamethasone (DXM) were used as model drugs, and yeast cell wall (YCW)-coated oleic acid-grafted chitosan (CSO) was used as a carrier to construct a yeast cell wall oral drug delivery system HCQ/DXM@CSO@YCW. This delivery system achieves ileal targeted delivery through the yeast cell wall (YCW), reduces IgA production, and synergistically regulates the inflammatory pathological environment. The delivery system had good gastrointestinal stability and biocompatibility. In vitro cell experiments had shown the targeted uptake ability of dendritic cells and macrophages, and in vitro intestinal experiments showed that the YCW has ileal targeting properties. In vivo pharmacodynamic experiments showed that the HCQ/DXM@CSO@YCW delivery system could significantly reduce the serum IgA levels and IgA deposition in the renal tissue of IgAN mice, as well as the levels of IL-6, TNF-α, and TGF-β in the renal tissue, improving the pathological morphology of the renal tissue. Therefore, the DXM/HCQ@CSO@YCW oral administration system provided a new intestinal targeted delivery platform for intestinal mucosal immunotherapy in IgA nephropathy.

用于 IgA 肾病治疗的酵母细胞壁回肠靶向给药系统
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信