One-Step Chronoamperometric Synthesized Nitrogen-Doped Graphene Oxide as a Novel Anode for Sodium-Ion Battery with an Enhanced Electrochemical Performance

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Ph. D. Student MohammedMustafa Almarzoge, Prof. Dr. Metin Gencten, Assoc. Prof. Dr. Gamzenur Ozsin
{"title":"One-Step Chronoamperometric Synthesized Nitrogen-Doped Graphene Oxide as a Novel Anode for Sodium-Ion Battery with an Enhanced Electrochemical Performance","authors":"Ph. D. Student MohammedMustafa Almarzoge,&nbsp;Prof. Dr. Metin Gencten,&nbsp;Assoc. Prof. Dr. Gamzenur Ozsin","doi":"10.1002/celc.202400564","DOIUrl":null,"url":null,"abstract":"<p>Sodium-ion batteries (NIBs) have gained significant attention in recent years due to the global abundance and cost-effectiveness of sodium, making them a promising alternative to lithium-based batteries. In this study, nitrogen-doped graphene oxide powders (NGO) have been prepared in one step by using chronoamperometric method and then have been used as anode materials for NIBs. The NGO powder surface is covalently doped by C−N formation. The synthesized powder had few layers (~3 layers) with nanocrystalline domain size (Lα) ~46 nm, and the number of sp<sup>2</sup> carbon rings was calculated to be ~18. The initial discharge capacity recorded 199.8 mAh g<sup>−1</sup> at 0.1 C rate. Besides, the capacity retention for long-term cycling of 100 cycles at 2 C rate was 91.78 %. The deduced diffusion coefficient from galvanostatic intermittent titration technique (GITT) and electrochemical impedance spectroscopy (EIS) measurements for NGO as anode in NIBs is in the range of 10<sup>−11</sup>–10<sup>−12</sup> cm<sup>2</sup> s<sup>−1</sup>. The electrochemical performance was attributed to the enhanced d-spacing of NGO up to 6.8 °A and formation large number of defects.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400564","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400564","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium-ion batteries (NIBs) have gained significant attention in recent years due to the global abundance and cost-effectiveness of sodium, making them a promising alternative to lithium-based batteries. In this study, nitrogen-doped graphene oxide powders (NGO) have been prepared in one step by using chronoamperometric method and then have been used as anode materials for NIBs. The NGO powder surface is covalently doped by C−N formation. The synthesized powder had few layers (~3 layers) with nanocrystalline domain size (Lα) ~46 nm, and the number of sp2 carbon rings was calculated to be ~18. The initial discharge capacity recorded 199.8 mAh g−1 at 0.1 C rate. Besides, the capacity retention for long-term cycling of 100 cycles at 2 C rate was 91.78 %. The deduced diffusion coefficient from galvanostatic intermittent titration technique (GITT) and electrochemical impedance spectroscopy (EIS) measurements for NGO as anode in NIBs is in the range of 10−11–10−12 cm2 s−1. The electrochemical performance was attributed to the enhanced d-spacing of NGO up to 6.8 °A and formation large number of defects.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信