Atomic Layer Processing (ALP): Ubi es et Quo Vadis?

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Kristina Ashurbekova, Mato Knez
{"title":"Atomic Layer Processing (ALP): Ubi es et Quo Vadis?","authors":"Kristina Ashurbekova,&nbsp;Mato Knez","doi":"10.1002/admi.202400408","DOIUrl":null,"url":null,"abstract":"<p>Atomic Layer Processing (ALP) techniques have transformed materials engineering by enabling atomic/molecular-level control over composition, fidelity in structure replication, and properties. Tracing its origins to pioneering molecular layering and atomic layer deposition work in the mid-20th century, this multifaceted field has remarkably diversified to include molecular layer deposition (MLD), atomic layer etching (ALE), area-selective deposition (ASD), and vapor-phase infiltration (VPI) processes. ALP is making great impacts across diverse disciplines – facilitating semiconductor miniaturization through ultrathin dielectric films, improving battery materials and engineering catalysts for energy applications, creating bioactive surfaces for advanced biomaterials, and promoting sustainable membranes for environmental remediation. As ALP techniques continue evolving through integration with additive manufacturing, machine learning, and in situ diagnostics, new frontiers in materials design are emerging, driven by the growing focus on environmental considerations like renewable precursors, energy-efficient processes, and waste minimization. This perspective article examines ALP's historical development, highlights current state-of-the-art applications across selected fields, and provides insights into the anticipated future trajectory, emerging application domains, and the pivotal role of academic-industry-research laboratory collaborations in catalyzing ALP innovations and facilitating its widespread adoption as a transformative manufacturing platform.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 4","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400408","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400408","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Atomic Layer Processing (ALP) techniques have transformed materials engineering by enabling atomic/molecular-level control over composition, fidelity in structure replication, and properties. Tracing its origins to pioneering molecular layering and atomic layer deposition work in the mid-20th century, this multifaceted field has remarkably diversified to include molecular layer deposition (MLD), atomic layer etching (ALE), area-selective deposition (ASD), and vapor-phase infiltration (VPI) processes. ALP is making great impacts across diverse disciplines – facilitating semiconductor miniaturization through ultrathin dielectric films, improving battery materials and engineering catalysts for energy applications, creating bioactive surfaces for advanced biomaterials, and promoting sustainable membranes for environmental remediation. As ALP techniques continue evolving through integration with additive manufacturing, machine learning, and in situ diagnostics, new frontiers in materials design are emerging, driven by the growing focus on environmental considerations like renewable precursors, energy-efficient processes, and waste minimization. This perspective article examines ALP's historical development, highlights current state-of-the-art applications across selected fields, and provides insights into the anticipated future trajectory, emerging application domains, and the pivotal role of academic-industry-research laboratory collaborations in catalyzing ALP innovations and facilitating its widespread adoption as a transformative manufacturing platform.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信