Are dispersal and dormancy alternative strategies for overcoming environmental variability?

IF 4.4 2区 环境科学与生态学 Q1 ECOLOGY
Ecology Pub Date : 2025-02-18 DOI:10.1002/ecy.70042
Kelley F. Slimon, Megan C. Szojka, Rachel M. Germain
{"title":"Are dispersal and dormancy alternative strategies for overcoming environmental variability?","authors":"Kelley F. Slimon,&nbsp;Megan C. Szojka,&nbsp;Rachel M. Germain","doi":"10.1002/ecy.70042","DOIUrl":null,"url":null,"abstract":"<p>Dispersal and dormancy serve as strategies for persistence in varying and uncertain environments and are critical to ecological models of biodiversity maintenance. Theories of specific ecological scenarios that favor dispersal, dormancy, or their covariance are rarely tested empirically, particularly in response to realistically complex patterns of spatiotemporal environmental variation. To resolve these complexities, we collected 20 populations of <i>Vulpia microstachys</i>, an annual grass native to California, from the field and grew them in a greenhouse, and on the offspring generation measured seed dispersal ability and seed dormancy rates. We hypothesized that seed dormancy rates, but not dispersal abilities, would be highest in populations from more productive, temporally variable sites, causing dispersal and dormancy to evolve independently—in other words, we leveraged evolved differences among populations to identify what ecological strategy (i.e., dispersal, dormancy, or both) is most likely to evolve at different parts of a variability gradient. Our data suggest that both dispersal and dormancy evolve to combat different axes and scales of spatial heterogeneity and can evolve independently (thus, they are not forced to covary). Most surprisingly, seed dormancy appears to have evolved as a strategy for overcoming microgeographic heterogeneity, an outcome that to our knowledge has not been considered by theory; we confirm the plausibility of this conclusion with a simulation. In sum, we provide much needed empirical data on the evolution of ecological strategies for coping with environmental variance, as well as a new perspective on the ecological function dormancy provides in heterogeneous landscapes.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"106 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecy.70042","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dispersal and dormancy serve as strategies for persistence in varying and uncertain environments and are critical to ecological models of biodiversity maintenance. Theories of specific ecological scenarios that favor dispersal, dormancy, or their covariance are rarely tested empirically, particularly in response to realistically complex patterns of spatiotemporal environmental variation. To resolve these complexities, we collected 20 populations of Vulpia microstachys, an annual grass native to California, from the field and grew them in a greenhouse, and on the offspring generation measured seed dispersal ability and seed dormancy rates. We hypothesized that seed dormancy rates, but not dispersal abilities, would be highest in populations from more productive, temporally variable sites, causing dispersal and dormancy to evolve independently—in other words, we leveraged evolved differences among populations to identify what ecological strategy (i.e., dispersal, dormancy, or both) is most likely to evolve at different parts of a variability gradient. Our data suggest that both dispersal and dormancy evolve to combat different axes and scales of spatial heterogeneity and can evolve independently (thus, they are not forced to covary). Most surprisingly, seed dormancy appears to have evolved as a strategy for overcoming microgeographic heterogeneity, an outcome that to our knowledge has not been considered by theory; we confirm the plausibility of this conclusion with a simulation. In sum, we provide much needed empirical data on the evolution of ecological strategies for coping with environmental variance, as well as a new perspective on the ecological function dormancy provides in heterogeneous landscapes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecology
Ecology 环境科学-生态学
CiteScore
8.30
自引率
2.10%
发文量
332
审稿时长
3 months
期刊介绍: Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信