Influence of the Electrolyte pH on the Double Layer Capacitance of Polycrystalline Pt and Au Electrodes in Acidic Solutions

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Kun-Ting Song, Peter M. Schneider, Ivo Grabovac, Batyr Garlyyev, Sebastian A. Watzele, Aliaksandr S. Bandarenka
{"title":"Influence of the Electrolyte pH on the Double Layer Capacitance of Polycrystalline Pt and Au Electrodes in Acidic Solutions","authors":"Kun-Ting Song,&nbsp;Peter M. Schneider,&nbsp;Ivo Grabovac,&nbsp;Batyr Garlyyev,&nbsp;Sebastian A. Watzele,&nbsp;Aliaksandr S. Bandarenka","doi":"10.1002/celc.202400587","DOIUrl":null,"url":null,"abstract":"<p>A deeper understanding of electrified solid/liquid interfaces of polycrystalline materials is crucial for optimizing energy conversion and storage devices, such as fuel cells, electrolyzers, and supercapacitors. After more than a century of research, the double-layer capacitance (C<sub>DL</sub>) has proven to be one of the few relatively easily experimentally accessible quantitative measures for characterizing such interfaces. However, despite their great importance, systematic C<sub>DL</sub> measurements are still not frequently associated with other interfacial properties. This work investigates the effect of the electrolyte pH on the C<sub>DL</sub> for polycrystalline platinum (Pt(pc)) and gold (Au(pc)) electrodes using cyclic voltammetry and impedance spectroscopy in acidic solutions with a pH ranging from 0 to 2 without adding any supporting electrolyte. Interestingly, under these conditions, the C<sub>DL</sub> for the Pt(pc) electrode increases with increasing electrolyte pH, while the C<sub>DL</sub> for the Au(pc) electrode shows the opposite trend. The increasing trend for Pt(pc) cannot be quantitatively described by the classical Stern model due to the stronger adsorption phenomenon on Pt surfaces. Moreover, positive linear trends with pH were found for the potentials of minimum C<sub>DL</sub> values and the potentials of maximum entropy for both electrodes, which closely correlate with reaction activities. However, the transition potentials of the constant phase element exponent (an element commonly used to approximate the behavior of the double layer in experiments) are only observed for the Pt electrode due to the phase transitions within the hydrogen adsorption/desorption and double-layer regions. These findings pose an important step toward revealing the interplay between essential interfacial parameters, which is crucial for a complete understanding of the electrical double layer.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400587","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400587","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

A deeper understanding of electrified solid/liquid interfaces of polycrystalline materials is crucial for optimizing energy conversion and storage devices, such as fuel cells, electrolyzers, and supercapacitors. After more than a century of research, the double-layer capacitance (CDL) has proven to be one of the few relatively easily experimentally accessible quantitative measures for characterizing such interfaces. However, despite their great importance, systematic CDL measurements are still not frequently associated with other interfacial properties. This work investigates the effect of the electrolyte pH on the CDL for polycrystalline platinum (Pt(pc)) and gold (Au(pc)) electrodes using cyclic voltammetry and impedance spectroscopy in acidic solutions with a pH ranging from 0 to 2 without adding any supporting electrolyte. Interestingly, under these conditions, the CDL for the Pt(pc) electrode increases with increasing electrolyte pH, while the CDL for the Au(pc) electrode shows the opposite trend. The increasing trend for Pt(pc) cannot be quantitatively described by the classical Stern model due to the stronger adsorption phenomenon on Pt surfaces. Moreover, positive linear trends with pH were found for the potentials of minimum CDL values and the potentials of maximum entropy for both electrodes, which closely correlate with reaction activities. However, the transition potentials of the constant phase element exponent (an element commonly used to approximate the behavior of the double layer in experiments) are only observed for the Pt electrode due to the phase transitions within the hydrogen adsorption/desorption and double-layer regions. These findings pose an important step toward revealing the interplay between essential interfacial parameters, which is crucial for a complete understanding of the electrical double layer.

Abstract Image

酸性溶液中电解液pH对多晶Pt和Au电极双层电容的影响
深入了解多晶材料的带电固/液界面对于优化能量转换和存储设备(如燃料电池、电解槽和超级电容器)至关重要。经过一个多世纪的研究,双层电容(CDL)已被证明是为数不多的相对容易实验获得的表征这种界面的定量措施之一。然而,尽管它们非常重要,系统的CDL测量仍然不经常与其他界面性质联系起来。本研究采用循环伏安法和阻抗谱法,在pH值为0 ~ 2的酸性溶液中,研究了电解质pH值对多晶铂(Pt(pc))和金(Au(pc))电极CDL的影响。有趣的是,在这些条件下,Pt(pc)电极的CDL随着电解质pH的增加而增加,而Au(pc)电极的CDL则呈现相反的趋势。Pt(pc)的增加趋势不能用经典Stern模型定量描述,因为Pt表面的吸附现象更强。此外,两个电极的最小CDL值电位和最大熵值电位与pH呈线性正相关,与反应活性密切相关。然而,由于氢吸附/解吸和双层区域内的相变,仅在Pt电极上观察到恒相元素指数(实验中常用来近似双层行为的元素)的过渡势。这些发现为揭示基本界面参数之间的相互作用迈出了重要的一步,这对于完全理解双电层至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信