Propagation Characteristics of Electrostatic Surface Plasma Waves at the Spin-Polarized Quantum Plasma–Vacuum Interface

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Muhammad Adnan, Muhammad Nazir,  Ikramullah, Fida Younus Khattak
{"title":"Propagation Characteristics of Electrostatic Surface Plasma Waves at the Spin-Polarized Quantum Plasma–Vacuum Interface","authors":"Muhammad Adnan,&nbsp;Muhammad Nazir,&nbsp; Ikramullah,&nbsp;Fida Younus Khattak","doi":"10.1002/ctpp.202300172","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This investigation explores the characteristics of electrostatic surface plasma waves within the framework of a spin-polarized quantum plasma. Utilizing the spin-polarized quantum hydrodynamic model and incorporating essential elements like Fermi pressure and Bohm potential, we derive the dispersion relation governing surface plasma waves at a plasma–vacuum interface. Through Fourier decomposition of the hydrodynamic model, we establish the dispersion relation that outlines the behavior of surface plasmons under conditions of small amplitude. Quantum effects, encompassing degenerate pressure, and Bohm potential are considered with specific attention given to the spin polarization effect, treating spin up, and spin down electrons as distinct species. The resulting dispersion relation demonstrates that, regardless of the degree of spin matching, Bohm potential significantly alters the phase speed in the limit of a large wave vector. Increasing spin mismatch in the quantum plasma leads to a decrease in the phase speed of the surface mode for a fixed value of the plasmonic coupling parameter <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation>$$ H $$</annotation>\n </semantics></math>. Our findings bear relevance to graphene-based plasmonic systems, aligning with some of the observations reported in Gao et al. (2013) and Guo et al. (2019).</p>\n </div>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ctpp.202300172","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

This investigation explores the characteristics of electrostatic surface plasma waves within the framework of a spin-polarized quantum plasma. Utilizing the spin-polarized quantum hydrodynamic model and incorporating essential elements like Fermi pressure and Bohm potential, we derive the dispersion relation governing surface plasma waves at a plasma–vacuum interface. Through Fourier decomposition of the hydrodynamic model, we establish the dispersion relation that outlines the behavior of surface plasmons under conditions of small amplitude. Quantum effects, encompassing degenerate pressure, and Bohm potential are considered with specific attention given to the spin polarization effect, treating spin up, and spin down electrons as distinct species. The resulting dispersion relation demonstrates that, regardless of the degree of spin matching, Bohm potential significantly alters the phase speed in the limit of a large wave vector. Increasing spin mismatch in the quantum plasma leads to a decrease in the phase speed of the surface mode for a fixed value of the plasmonic coupling parameter H $$ H $$ . Our findings bear relevance to graphene-based plasmonic systems, aligning with some of the observations reported in Gao et al. (2013) and Guo et al. (2019).

静电表面等离子体波在自旋极化量子等离子体-真空界面的传播特性
本研究探讨了自旋极化量子等离子体框架内静电表面等离子体波的特性。利用自旋极化量子流体力学模型,结合费米压力和玻姆势等基本要素,推导了等离子体-真空界面表面等离子体波的色散关系。通过水动力模型的傅里叶分解,我们建立了描述表面等离子体在小振幅条件下行为的色散关系。量子效应,包括简并压力和玻姆势,特别关注自旋极化效应,将自旋向上和自旋向下的电子视为不同的物种。由此得到的色散关系表明,无论自旋匹配程度如何,玻姆势在大波矢量极限下显著改变相速度。当等离子体耦合参数H $$ H $$为一定值时,量子等离子体中自旋失配的增加会导致表面模式相速度的降低。我们的发现与基于石墨烯的等离子体系统相关,与Gao等人(2013)和Guo等人(2019)报告的一些观察结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Contributions to Plasma Physics
Contributions to Plasma Physics 物理-物理:流体与等离子体
CiteScore
2.90
自引率
12.50%
发文量
110
审稿时长
4-8 weeks
期刊介绍: Aims and Scope of Contributions to Plasma Physics: Basic physics of low-temperature plasmas; Strongly correlated non-ideal plasmas; Dusty Plasmas; Plasma discharges - microplasmas, reactive, and atmospheric pressure plasmas; Plasma diagnostics; Plasma-surface interaction; Plasma technology; Plasma medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信