PANoptosis-Related Optimal Model (PROM): A Novel Prognostic Tool Unveiling Immune Dynamics in Lung Adenocarcinoma

Jianming Peng, Leijie Tong, Rui Liang, Huisen Yan, Xiuling Jiang, Youai Dai
{"title":"PANoptosis-Related Optimal Model (PROM): A Novel Prognostic Tool Unveiling Immune Dynamics in Lung Adenocarcinoma","authors":"Jianming Peng,&nbsp;Leijie Tong,&nbsp;Rui Liang,&nbsp;Huisen Yan,&nbsp;Xiuling Jiang,&nbsp;Youai Dai","doi":"10.1155/ijog/5595391","DOIUrl":null,"url":null,"abstract":"<p><b>Background:</b> PANoptosis, a recently characterized inflammatory programmed cell death modality orchestrated by the PANoptosome complex, integrates molecular mechanisms of pyroptosis, apoptosis, and necroptosis. Although this pathway potentially mediates tumor progression, its role in lung adenocarcinoma (LUAD) remains largely unexplored.</p><p><b>Methods:</b> Through comprehensive single-cell transcriptomic profiling, we systematically identified critical PANoptosis-associated gene signatures. Prognostic molecular determinants were subsequently delineated via univariate Cox proportional hazards regression analysis. We constructed a PANoptosis-related optimal model (PROM) through the integration of 10 machine learning algorithms. The model was initially developed using The Cancer Genome Atlas (TCGA)-LUAD cohort and subsequently validated across six independent LUAD cohorts. Model performance was evaluated using mean concordance index. Furthermore, we conducted extensive multiomics analyses to delineate differential pathway activation patterns and immune cell infiltration profiles between PROM-stratified risk subgroups.</p><p><b>Results:</b> Cellular populations exhibiting elevated PANoptosis signatures demonstrated enhanced intercellular signaling networks. PROM demonstrated superior prognostic capability across multiple validation cohorts. Receiver operating characteristic curve analyses revealed area under the curve values exceeding 0.7 across all seven cohorts, with several achieving values above 0.8, indicating robust discriminative performance. The model score exhibited significant correlation with immunological parameters. Notably, high PROM scores were associated with attenuated immune responses, suggesting an immunosuppressive tumor microenvironment. Multiomics investigations revealed significant alterations in critical oncogenic pathways and immune landscape between PROM-stratified subgroups.</p><p><b>Conclusion:</b> This investigation establishes PROM as a clinically applicable prognostic tool for LUAD risk stratification. Beyond its predictive utility, PROM elucidates PANoptosis-associated immunological and biological mechanisms underlying LUAD progression. These findings provide novel mechanistic insights into LUAD pathogenesis and may inform the development of targeted therapeutic interventions and personalized treatment strategies to optimize patient outcomes.</p>","PeriodicalId":55239,"journal":{"name":"Comparative and Functional Genomics","volume":"2025 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/ijog/5595391","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative and Functional Genomics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/ijog/5595391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: PANoptosis, a recently characterized inflammatory programmed cell death modality orchestrated by the PANoptosome complex, integrates molecular mechanisms of pyroptosis, apoptosis, and necroptosis. Although this pathway potentially mediates tumor progression, its role in lung adenocarcinoma (LUAD) remains largely unexplored.

Methods: Through comprehensive single-cell transcriptomic profiling, we systematically identified critical PANoptosis-associated gene signatures. Prognostic molecular determinants were subsequently delineated via univariate Cox proportional hazards regression analysis. We constructed a PANoptosis-related optimal model (PROM) through the integration of 10 machine learning algorithms. The model was initially developed using The Cancer Genome Atlas (TCGA)-LUAD cohort and subsequently validated across six independent LUAD cohorts. Model performance was evaluated using mean concordance index. Furthermore, we conducted extensive multiomics analyses to delineate differential pathway activation patterns and immune cell infiltration profiles between PROM-stratified risk subgroups.

Results: Cellular populations exhibiting elevated PANoptosis signatures demonstrated enhanced intercellular signaling networks. PROM demonstrated superior prognostic capability across multiple validation cohorts. Receiver operating characteristic curve analyses revealed area under the curve values exceeding 0.7 across all seven cohorts, with several achieving values above 0.8, indicating robust discriminative performance. The model score exhibited significant correlation with immunological parameters. Notably, high PROM scores were associated with attenuated immune responses, suggesting an immunosuppressive tumor microenvironment. Multiomics investigations revealed significant alterations in critical oncogenic pathways and immune landscape between PROM-stratified subgroups.

Conclusion: This investigation establishes PROM as a clinically applicable prognostic tool for LUAD risk stratification. Beyond its predictive utility, PROM elucidates PANoptosis-associated immunological and biological mechanisms underlying LUAD progression. These findings provide novel mechanistic insights into LUAD pathogenesis and may inform the development of targeted therapeutic interventions and personalized treatment strategies to optimize patient outcomes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Comparative and Functional Genomics
Comparative and Functional Genomics 生物-生化与分子生物学
自引率
0.00%
发文量
0
审稿时长
2 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信