Criteria for extension of commutativity to fractional iterates of holomorphic self-maps in the unit disc

IF 1 2区 数学 Q1 MATHEMATICS
Manuel D. Contreras, Santiago Díaz-Madrigal, Pavel Gumenyuk
{"title":"Criteria for extension of commutativity to fractional iterates of holomorphic self-maps in the unit disc","authors":"Manuel D. Contreras,&nbsp;Santiago Díaz-Madrigal,&nbsp;Pavel Gumenyuk","doi":"10.1112/jlms.70077","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>φ</mi>\n <annotation>$\\varphi$</annotation>\n </semantics></math> be a univalent non-elliptic self-map of the unit disc <span></span><math>\n <semantics>\n <mi>D</mi>\n <annotation>$\\mathbb {D}$</annotation>\n </semantics></math> and let <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>ψ</mi>\n <mi>t</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\psi _{t})$</annotation>\n </semantics></math> be a continuous one-parameter semigroup of holomorphic functions in <span></span><math>\n <semantics>\n <mi>D</mi>\n <annotation>$\\mathbb {D}$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ψ</mi>\n <mn>1</mn>\n </msub>\n <mo>≠</mo>\n <msub>\n <mi>id</mi>\n <mi>D</mi>\n </msub>\n </mrow>\n <annotation>$\\psi _{1}\\ne {\\sf id}_\\mathbb {D}$</annotation>\n </semantics></math> commutes with <span></span><math>\n <semantics>\n <mi>φ</mi>\n <annotation>$\\varphi$</annotation>\n </semantics></math>. This assumption does not imply that all elements of the semigroup <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>ψ</mi>\n <mi>t</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\psi _t)$</annotation>\n </semantics></math> commute with <span></span><math>\n <semantics>\n <mi>φ</mi>\n <annotation>$\\varphi$</annotation>\n </semantics></math>. In this paper, we provide a number of sufficient conditions that guarantee that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ψ</mi>\n <mi>t</mi>\n </msub>\n <mspace></mspace>\n <mo>∘</mo>\n <mspace></mspace>\n <mi>φ</mi>\n <mo>=</mo>\n <mi>φ</mi>\n <mspace></mspace>\n <mo>∘</mo>\n <mspace></mspace>\n <msub>\n <mi>ψ</mi>\n <mi>t</mi>\n </msub>\n </mrow>\n <annotation>${\\psi _t \\ \\circ \\ \\varphi =\\varphi \\ \\circ \\ \\psi _t}$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>${t&gt;0}$</annotation>\n </semantics></math>: This holds, for example, if <span></span><math>\n <semantics>\n <mi>φ</mi>\n <annotation>$\\varphi$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>ψ</mi>\n <mn>1</mn>\n </msub>\n <annotation>$\\psi _1$</annotation>\n </semantics></math> have a common boundary (regular or irregular) fixed point different from their common Denjoy–Wolff point <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>, or when <span></span><math>\n <semantics>\n <msub>\n <mi>ψ</mi>\n <mn>1</mn>\n </msub>\n <annotation>$\\psi _1$</annotation>\n </semantics></math> has a boundary regular fixed point <span></span><math>\n <semantics>\n <mrow>\n <mi>σ</mi>\n <mo>≠</mo>\n <mi>τ</mi>\n </mrow>\n <annotation>${\\sigma \\ne \\tau }$</annotation>\n </semantics></math> at which <span></span><math>\n <semantics>\n <mi>φ</mi>\n <annotation>$\\varphi$</annotation>\n </semantics></math> is isogonal, or when <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mi>φ</mi>\n <mo>−</mo>\n <msub>\n <mi>id</mi>\n <mi>D</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>/</mo>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>ψ</mi>\n <mn>1</mn>\n </msub>\n <mo>−</mo>\n <msub>\n <mi>id</mi>\n <mi>D</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$(\\varphi -{\\sf id}_\\mathbb {D})/(\\psi _1-{\\sf id}_\\mathbb {D})$</annotation>\n </semantics></math> has an unrestricted limit at <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>. In addition, we analyze how <span></span><math>\n <semantics>\n <mi>φ</mi>\n <annotation>$\\varphi$</annotation>\n </semantics></math> behaves in the petals of the semigroup <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>ψ</mi>\n <mi>t</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\psi _t)$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 2","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70077","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let φ $\varphi$ be a univalent non-elliptic self-map of the unit disc  D $\mathbb {D}$ and let ( ψ t ) $(\psi _{t})$ be a continuous one-parameter semigroup of holomorphic functions in D $\mathbb {D}$ such that ψ 1 id D $\psi _{1}\ne {\sf id}_\mathbb {D}$ commutes with  φ $\varphi$ . This assumption does not imply that all elements of the semigroup  ( ψ t ) $(\psi _t)$ commute with  φ $\varphi$ . In this paper, we provide a number of sufficient conditions that guarantee that ψ t φ = φ ψ t ${\psi _t \ \circ \ \varphi =\varphi \ \circ \ \psi _t}$ for all t > 0 ${t>0}$ : This holds, for example, if φ $\varphi$ and ψ 1 $\psi _1$ have a common boundary (regular or irregular) fixed point different from their common Denjoy–Wolff point  τ $\tau$ , or when ψ 1 $\psi _1$ has a boundary regular fixed point σ τ ${\sigma \ne \tau }$ at which φ $\varphi$ is isogonal, or when ( φ id D ) / ( ψ 1 id D ) $(\varphi -{\sf id}_\mathbb {D})/(\psi _1-{\sf id}_\mathbb {D})$ has an unrestricted limit at  τ $\tau$ . In addition, we analyze how φ $\varphi$ behaves in the petals of the semigroup  ( ψ t ) $(\psi _t)$ .

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信