Manuel D. Contreras, Santiago Díaz-Madrigal, Pavel Gumenyuk
{"title":"Criteria for extension of commutativity to fractional iterates of holomorphic self-maps in the unit disc","authors":"Manuel D. Contreras, Santiago Díaz-Madrigal, Pavel Gumenyuk","doi":"10.1112/jlms.70077","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>φ</mi>\n <annotation>$\\varphi$</annotation>\n </semantics></math> be a univalent non-elliptic self-map of the unit disc <span></span><math>\n <semantics>\n <mi>D</mi>\n <annotation>$\\mathbb {D}$</annotation>\n </semantics></math> and let <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>ψ</mi>\n <mi>t</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\psi _{t})$</annotation>\n </semantics></math> be a continuous one-parameter semigroup of holomorphic functions in <span></span><math>\n <semantics>\n <mi>D</mi>\n <annotation>$\\mathbb {D}$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ψ</mi>\n <mn>1</mn>\n </msub>\n <mo>≠</mo>\n <msub>\n <mi>id</mi>\n <mi>D</mi>\n </msub>\n </mrow>\n <annotation>$\\psi _{1}\\ne {\\sf id}_\\mathbb {D}$</annotation>\n </semantics></math> commutes with <span></span><math>\n <semantics>\n <mi>φ</mi>\n <annotation>$\\varphi$</annotation>\n </semantics></math>. This assumption does not imply that all elements of the semigroup <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>ψ</mi>\n <mi>t</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\psi _t)$</annotation>\n </semantics></math> commute with <span></span><math>\n <semantics>\n <mi>φ</mi>\n <annotation>$\\varphi$</annotation>\n </semantics></math>. In this paper, we provide a number of sufficient conditions that guarantee that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ψ</mi>\n <mi>t</mi>\n </msub>\n <mspace></mspace>\n <mo>∘</mo>\n <mspace></mspace>\n <mi>φ</mi>\n <mo>=</mo>\n <mi>φ</mi>\n <mspace></mspace>\n <mo>∘</mo>\n <mspace></mspace>\n <msub>\n <mi>ψ</mi>\n <mi>t</mi>\n </msub>\n </mrow>\n <annotation>${\\psi _t \\ \\circ \\ \\varphi =\\varphi \\ \\circ \\ \\psi _t}$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>${t>0}$</annotation>\n </semantics></math>: This holds, for example, if <span></span><math>\n <semantics>\n <mi>φ</mi>\n <annotation>$\\varphi$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>ψ</mi>\n <mn>1</mn>\n </msub>\n <annotation>$\\psi _1$</annotation>\n </semantics></math> have a common boundary (regular or irregular) fixed point different from their common Denjoy–Wolff point <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>, or when <span></span><math>\n <semantics>\n <msub>\n <mi>ψ</mi>\n <mn>1</mn>\n </msub>\n <annotation>$\\psi _1$</annotation>\n </semantics></math> has a boundary regular fixed point <span></span><math>\n <semantics>\n <mrow>\n <mi>σ</mi>\n <mo>≠</mo>\n <mi>τ</mi>\n </mrow>\n <annotation>${\\sigma \\ne \\tau }$</annotation>\n </semantics></math> at which <span></span><math>\n <semantics>\n <mi>φ</mi>\n <annotation>$\\varphi$</annotation>\n </semantics></math> is isogonal, or when <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mi>φ</mi>\n <mo>−</mo>\n <msub>\n <mi>id</mi>\n <mi>D</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>/</mo>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>ψ</mi>\n <mn>1</mn>\n </msub>\n <mo>−</mo>\n <msub>\n <mi>id</mi>\n <mi>D</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$(\\varphi -{\\sf id}_\\mathbb {D})/(\\psi _1-{\\sf id}_\\mathbb {D})$</annotation>\n </semantics></math> has an unrestricted limit at <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>. In addition, we analyze how <span></span><math>\n <semantics>\n <mi>φ</mi>\n <annotation>$\\varphi$</annotation>\n </semantics></math> behaves in the petals of the semigroup <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>ψ</mi>\n <mi>t</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\psi _t)$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 2","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70077","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a univalent non-elliptic self-map of the unit disc and let be a continuous one-parameter semigroup of holomorphic functions in such that commutes with . This assumption does not imply that all elements of the semigroup commute with . In this paper, we provide a number of sufficient conditions that guarantee that for all : This holds, for example, if and have a common boundary (regular or irregular) fixed point different from their common Denjoy–Wolff point , or when has a boundary regular fixed point at which is isogonal, or when has an unrestricted limit at . In addition, we analyze how behaves in the petals of the semigroup .
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.