Dr. Yue Zhou, Dr. Dong Chen, Dr. Wanmiao Gu, Dr. Wentao Fan, Dr. Runguo Wang, Dr. Liang Fang, Dr. Qing You, Dr. Shengli Zhuang, Guoqing Bian, Dr. Lingwen Liao, Ziyan Zhou, Dr. Nan Xia, Prof. Dr. Jun Yang, Prof. Dr. Zhikun Wu
{"title":"Frontispiz: Chemical Synthesis of ~1 nm Multilevel Capacitor-like Particles with Atomic Precision","authors":"Dr. Yue Zhou, Dr. Dong Chen, Dr. Wanmiao Gu, Dr. Wentao Fan, Dr. Runguo Wang, Dr. Liang Fang, Dr. Qing You, Dr. Shengli Zhuang, Guoqing Bian, Dr. Lingwen Liao, Ziyan Zhou, Dr. Nan Xia, Prof. Dr. Jun Yang, Prof. Dr. Zhikun Wu","doi":"10.1002/ange.202580862","DOIUrl":null,"url":null,"abstract":"<p>An increasing need for the miniaturization of optoelectronic devices or machines has become evident as we are entering the post-Moore era. One bold conceit is that chemically synthesized nanoparticles (NP) can function as nanodevices or nanomachines. In their Research Article (e202420931), Zhikun Wu, Jun Yang, Nan Xia et al. demonstrate the feasibility by reporting a novel nanocluster with multileveled capacitor-like character, which is identified by a Cd(II) transport from the outershell to the innermost position after charged with NaBH4, as well as some other ways such as NPA charge distribution, voltammetry and electrocatalytic reduction of CO2 to CO. An intra-NP anti-galvanic reduction was found after the migrating of charge carrier.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202580862","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202580862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An increasing need for the miniaturization of optoelectronic devices or machines has become evident as we are entering the post-Moore era. One bold conceit is that chemically synthesized nanoparticles (NP) can function as nanodevices or nanomachines. In their Research Article (e202420931), Zhikun Wu, Jun Yang, Nan Xia et al. demonstrate the feasibility by reporting a novel nanocluster with multileveled capacitor-like character, which is identified by a Cd(II) transport from the outershell to the innermost position after charged with NaBH4, as well as some other ways such as NPA charge distribution, voltammetry and electrocatalytic reduction of CO2 to CO. An intra-NP anti-galvanic reduction was found after the migrating of charge carrier.