Improving Surface Properties of AlSi10Mg Fabricated by Cold Spray: Mechanical Milling is a Tool for Fabrication of Composite ZrN/AlSi10Mg Particles

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Veronika S. Suvorova, Dmitrii S. Suvorov, Fedor Yu. Bochkanov, Victoriya U. Mnatsakanyan, Artur Chkirya, Samat K. Mukanov, Stanislav V. Chernyshikhin, Andrey A. Nepapushev, Dmitry O. Moskovskikh
{"title":"Improving Surface Properties of AlSi10Mg Fabricated by Cold Spray: Mechanical Milling is a Tool for Fabrication of Composite ZrN/AlSi10Mg Particles","authors":"Veronika S. Suvorova,&nbsp;Dmitrii S. Suvorov,&nbsp;Fedor Yu. Bochkanov,&nbsp;Victoriya U. Mnatsakanyan,&nbsp;Artur Chkirya,&nbsp;Samat K. Mukanov,&nbsp;Stanislav V. Chernyshikhin,&nbsp;Andrey A. Nepapushev,&nbsp;Dmitry O. Moskovskikh","doi":"10.1002/adem.202401862","DOIUrl":null,"url":null,"abstract":"<p>\nIn this study, the possibility of employing ZrN/AlSi10Mg composite powders with 10, 20, and 30 wt% ZrN and a low-pressure cold spraying (CS) unit to enhance the surface properties of AlSi10Mg obtained through laser powder bed fusion (LPBF) is investigated for the first time. A high-energy ball mill is used to produce composite powders from AlSi10Mg and ZrN powders. ZrN/AlSi10Mg powders are sprayed onto the surface of LPBFed AlSi10Mg at a pressure of 0.7 MPa and a temperature of 400 °C. It is demonstrated that the utilization of composite powders facilitates a uniform distribution of ceramic particles in the coating and reduces the share of their losses during the CS process to 2%. It is found that the microhardness and elastic modulus of composite coatings increase with increasing mass fractions of ZrN, while the wear rate (WR) decreases. A change in the wear mechanism from adhesive to abrasive is observed. It is possible to increase the microhardness and elastic modulus of the LPBFed AlSi10Mg surface with a coating containing 30 wt% ZrN by 43% (193 ± 5 HV<sub>0.1</sub>) and 62% (105 ± 9 GPa), respectively, and reduce the WR by 25% (8.26 ± 0.09) × 10<sup>−4</sup> mm<sup>3</sup> m<sup>−1</sup>.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401862","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the possibility of employing ZrN/AlSi10Mg composite powders with 10, 20, and 30 wt% ZrN and a low-pressure cold spraying (CS) unit to enhance the surface properties of AlSi10Mg obtained through laser powder bed fusion (LPBF) is investigated for the first time. A high-energy ball mill is used to produce composite powders from AlSi10Mg and ZrN powders. ZrN/AlSi10Mg powders are sprayed onto the surface of LPBFed AlSi10Mg at a pressure of 0.7 MPa and a temperature of 400 °C. It is demonstrated that the utilization of composite powders facilitates a uniform distribution of ceramic particles in the coating and reduces the share of their losses during the CS process to 2%. It is found that the microhardness and elastic modulus of composite coatings increase with increasing mass fractions of ZrN, while the wear rate (WR) decreases. A change in the wear mechanism from adhesive to abrasive is observed. It is possible to increase the microhardness and elastic modulus of the LPBFed AlSi10Mg surface with a coating containing 30 wt% ZrN by 43% (193 ± 5 HV0.1) and 62% (105 ± 9 GPa), respectively, and reduce the WR by 25% (8.26 ± 0.09) × 10−4 mm3 m−1.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信