Ahmad Mobed, Mohammad Darvishi, Vahid Alivirdiloo, Sara Ebrahimi, Mobasher Hajiabbasi, Farhood Ghazi, Hamidreza Hassanzadeh Khanmiri
{"title":"Cost-Effective Nanosensor Solutions for Ultra-Sensitive Detection of Metronidazole","authors":"Ahmad Mobed, Mohammad Darvishi, Vahid Alivirdiloo, Sara Ebrahimi, Mobasher Hajiabbasi, Farhood Ghazi, Hamidreza Hassanzadeh Khanmiri","doi":"10.1002/ansa.70000","DOIUrl":null,"url":null,"abstract":"<p>Metronidazole (MNZ) is a widely used imidazole antibiotic effective against bacterial and protozoal infections, including giardiasis, trichomoniasis, bacterial vaginosis, and antibiotic-associated colitis. However, prolonged and excessive use of MNZ can lead to serious side effects, such as peripheral neuropathies, toxicity, and optic neuropathy. Therefore, the accurate detection and removal of MNZ present significant technical challenges. This manuscript introduces novel approaches for the development and integration of precise and cost-effective sensors specifically designed for the accurate measurement of MNZ levels. We explore cutting-edge nanotechnology strategies for detecting MNZ, with a particular focus on innovative nanobiosensors, including photodynamic-based biosensors, acousto dynamic sensors, and electrochemical biosensors. Additionally, we delve into the unique challenges and opportunities associated with multiphysics biometric biosensors and related nanotechnologies in the detection of MNZ. This review not only provides insights and scientific evidence regarding the application of nanobiosensors for the accurate measurement of MNZ but also highlights recent advancements in sensor technology that represent a significant leap forward in this field. By emphasizing these novel contributions, we aim to pave the way for future research and development in this critical area. Ultimately, our findings underscore the importance of reliable detection methods in mitigating the risks associated with MNZ use and improving patient safety.</p>","PeriodicalId":93411,"journal":{"name":"Analytical science advances","volume":"6 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ansa.70000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical science advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ansa.70000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metronidazole (MNZ) is a widely used imidazole antibiotic effective against bacterial and protozoal infections, including giardiasis, trichomoniasis, bacterial vaginosis, and antibiotic-associated colitis. However, prolonged and excessive use of MNZ can lead to serious side effects, such as peripheral neuropathies, toxicity, and optic neuropathy. Therefore, the accurate detection and removal of MNZ present significant technical challenges. This manuscript introduces novel approaches for the development and integration of precise and cost-effective sensors specifically designed for the accurate measurement of MNZ levels. We explore cutting-edge nanotechnology strategies for detecting MNZ, with a particular focus on innovative nanobiosensors, including photodynamic-based biosensors, acousto dynamic sensors, and electrochemical biosensors. Additionally, we delve into the unique challenges and opportunities associated with multiphysics biometric biosensors and related nanotechnologies in the detection of MNZ. This review not only provides insights and scientific evidence regarding the application of nanobiosensors for the accurate measurement of MNZ but also highlights recent advancements in sensor technology that represent a significant leap forward in this field. By emphasizing these novel contributions, we aim to pave the way for future research and development in this critical area. Ultimately, our findings underscore the importance of reliable detection methods in mitigating the risks associated with MNZ use and improving patient safety.