Cost-Effective Nanosensor Solutions for Ultra-Sensitive Detection of Metronidazole

IF 3 Q2 CHEMISTRY, ANALYTICAL
Ahmad Mobed, Mohammad Darvishi, Vahid Alivirdiloo, Sara Ebrahimi, Mobasher Hajiabbasi, Farhood Ghazi, Hamidreza Hassanzadeh Khanmiri
{"title":"Cost-Effective Nanosensor Solutions for Ultra-Sensitive Detection of Metronidazole","authors":"Ahmad Mobed,&nbsp;Mohammad Darvishi,&nbsp;Vahid Alivirdiloo,&nbsp;Sara Ebrahimi,&nbsp;Mobasher Hajiabbasi,&nbsp;Farhood Ghazi,&nbsp;Hamidreza Hassanzadeh Khanmiri","doi":"10.1002/ansa.70000","DOIUrl":null,"url":null,"abstract":"<p>Metronidazole (MNZ) is a widely used imidazole antibiotic effective against bacterial and protozoal infections, including giardiasis, trichomoniasis, bacterial vaginosis, and antibiotic-associated colitis. However, prolonged and excessive use of MNZ can lead to serious side effects, such as peripheral neuropathies, toxicity, and optic neuropathy. Therefore, the accurate detection and removal of MNZ present significant technical challenges. This manuscript introduces novel approaches for the development and integration of precise and cost-effective sensors specifically designed for the accurate measurement of MNZ levels. We explore cutting-edge nanotechnology strategies for detecting MNZ, with a particular focus on innovative nanobiosensors, including photodynamic-based biosensors, acousto dynamic sensors, and electrochemical biosensors. Additionally, we delve into the unique challenges and opportunities associated with multiphysics biometric biosensors and related nanotechnologies in the detection of MNZ. This review not only provides insights and scientific evidence regarding the application of nanobiosensors for the accurate measurement of MNZ but also highlights recent advancements in sensor technology that represent a significant leap forward in this field. By emphasizing these novel contributions, we aim to pave the way for future research and development in this critical area. Ultimately, our findings underscore the importance of reliable detection methods in mitigating the risks associated with MNZ use and improving patient safety.</p>","PeriodicalId":93411,"journal":{"name":"Analytical science advances","volume":"6 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ansa.70000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical science advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ansa.70000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metronidazole (MNZ) is a widely used imidazole antibiotic effective against bacterial and protozoal infections, including giardiasis, trichomoniasis, bacterial vaginosis, and antibiotic-associated colitis. However, prolonged and excessive use of MNZ can lead to serious side effects, such as peripheral neuropathies, toxicity, and optic neuropathy. Therefore, the accurate detection and removal of MNZ present significant technical challenges. This manuscript introduces novel approaches for the development and integration of precise and cost-effective sensors specifically designed for the accurate measurement of MNZ levels. We explore cutting-edge nanotechnology strategies for detecting MNZ, with a particular focus on innovative nanobiosensors, including photodynamic-based biosensors, acousto dynamic sensors, and electrochemical biosensors. Additionally, we delve into the unique challenges and opportunities associated with multiphysics biometric biosensors and related nanotechnologies in the detection of MNZ. This review not only provides insights and scientific evidence regarding the application of nanobiosensors for the accurate measurement of MNZ but also highlights recent advancements in sensor technology that represent a significant leap forward in this field. By emphasizing these novel contributions, we aim to pave the way for future research and development in this critical area. Ultimately, our findings underscore the importance of reliable detection methods in mitigating the risks associated with MNZ use and improving patient safety.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信