Hybrid near-infrared-activated luminescent gold nanoparticle platform for efficient cancer therapy

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Feihong Yan, Ruiyuan Li, Jiaxin Liu, Lulu Yang, Helin Liu, Shengcang Zhu, Yuhui Zhang, Lijun Wang, Lu Huang, Yu Wang, Yaqiang Qin, Yuhang Zhang, Xin Wang, Yuan Wang, Jianping Zhang, Yinlin Sha, Limin Fu, Zhiyong Liu, Rongcheng Han, Yuqiang Jiang
{"title":"Hybrid near-infrared-activated luminescent gold nanoparticle platform for efficient cancer therapy","authors":"Feihong Yan,&nbsp;Ruiyuan Li,&nbsp;Jiaxin Liu,&nbsp;Lulu Yang,&nbsp;Helin Liu,&nbsp;Shengcang Zhu,&nbsp;Yuhui Zhang,&nbsp;Lijun Wang,&nbsp;Lu Huang,&nbsp;Yu Wang,&nbsp;Yaqiang Qin,&nbsp;Yuhang Zhang,&nbsp;Xin Wang,&nbsp;Yuan Wang,&nbsp;Jianping Zhang,&nbsp;Yinlin Sha,&nbsp;Limin Fu,&nbsp;Zhiyong Liu,&nbsp;Rongcheng Han,&nbsp;Yuqiang Jiang","doi":"10.1007/s42114-024-01141-9","DOIUrl":null,"url":null,"abstract":"<div><p>The development of a multifunctional therapy nanoplatform is of crucial importance to tackle the complex challenges associated with cancer. Despite significant advancements in tumor treatment, the efficacy of these traditional approaches remains insufficient. Recurrence and metastasis following tumor treatment continue to represent a significant contributor to tumor-related mortality. This paper presents an improved, facile, and relatively green fabrication of (5-mercapto-1,3,4-thiadiazol-2-ylthio) acetic acid (TMT)-coated luminescent gold nanoparticles (L-AuNP@TMT), which exhibit highly membrane-targeting capacity and superior photodynamic properties. Furthermore, in vivo tumor-bearing mouse model experiments indicated that the L-AuNP@TMT could be used as a two-photon excited nanomedicine via pyroptosis-mediated anti-tumor immunity for effectively eliminating colorectal cancer (CRC), the third most common malignancy and the second deadliest cancer, without evident toxic side effects or tumor metastasis/recurrence. According to its facile and green fabrication approach, near-infrared light-activatable highly efficient photodynamic cancer therapy, and noninvasive imaging mode, this multifunctional nanoplatform offers significant advantages over traditional monotherapy techniques, providing an alternative for the precise clinical treatment of cancer.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 2","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-024-01141-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01141-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

The development of a multifunctional therapy nanoplatform is of crucial importance to tackle the complex challenges associated with cancer. Despite significant advancements in tumor treatment, the efficacy of these traditional approaches remains insufficient. Recurrence and metastasis following tumor treatment continue to represent a significant contributor to tumor-related mortality. This paper presents an improved, facile, and relatively green fabrication of (5-mercapto-1,3,4-thiadiazol-2-ylthio) acetic acid (TMT)-coated luminescent gold nanoparticles (L-AuNP@TMT), which exhibit highly membrane-targeting capacity and superior photodynamic properties. Furthermore, in vivo tumor-bearing mouse model experiments indicated that the L-AuNP@TMT could be used as a two-photon excited nanomedicine via pyroptosis-mediated anti-tumor immunity for effectively eliminating colorectal cancer (CRC), the third most common malignancy and the second deadliest cancer, without evident toxic side effects or tumor metastasis/recurrence. According to its facile and green fabrication approach, near-infrared light-activatable highly efficient photodynamic cancer therapy, and noninvasive imaging mode, this multifunctional nanoplatform offers significant advantages over traditional monotherapy techniques, providing an alternative for the precise clinical treatment of cancer.

混合近红外激活发光金纳米粒子平台的高效癌症治疗
多功能治疗纳米平台的开发对于解决与癌症相关的复杂挑战至关重要。尽管肿瘤治疗取得了重大进展,但这些传统方法的疗效仍然不足。肿瘤治疗后的复发和转移仍然是肿瘤相关死亡率的重要因素。本文提出了一种改进的、简单的、相对绿色的(5-巯基-1,3,4-噻二唑-2-基硫)乙酸(TMT)涂层发光金纳米粒子(L-AuNP@TMT),它具有高度的膜靶向能力和优越的光动力学性能。此外,体内荷瘤小鼠模型实验表明,L-AuNP@TMT可以作为双光子激发的纳米药物,通过焦热介导的抗肿瘤免疫,有效地消除结直肠癌(CRC),结直肠癌是世界上第三常见的恶性肿瘤,也是第二大致命的癌症,没有明显的毒副作用或肿瘤转移/复发。该多功能纳米平台以其简便的绿色制造方法、可近红外光激活的高效光动力癌症治疗和无创成像模式,比传统的单一治疗技术具有显著优势,为癌症的精确临床治疗提供了另一种选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信