Effect of fabric anisotropy on filtration mechanisms in granular filters

IF 2.4 3区 工程技术
Ali Abdallah, Eric Vincens, Hélène Magoariec, Christophe Picault
{"title":"Effect of fabric anisotropy on filtration mechanisms in granular filters","authors":"Ali Abdallah,&nbsp;Eric Vincens,&nbsp;Hélène Magoariec,&nbsp;Christophe Picault","doi":"10.1007/s10035-024-01485-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the impact of fabric anisotropy on the directional filtration mechanisms in granular filters, which arise from inherent particle shape variations and different preparation methods. Using the discrete element method, diverse filter samples underwent extensive numerical filtration tests in different directions. Subsequently, the pore space of these samples was analysed using an extraction algorithm. The results highlight the significant influence of particle shapes and preparation methods on intensifying anisotropy, which in turn remarkably affects directional filtration properties. Analysis of the pore space reveals variations in pore connectivity across different directions, explaining the observed differences in retention coefficients. This study emphasises the need for a comprehensive approach that accounts for constriction size, number, and connectivity to yield precise results. It contributes valuable insights into the role of anisotropy in granular materials, sheds light on complex directional filtration mechanisms, and advances related applications.</p></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01485-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the impact of fabric anisotropy on the directional filtration mechanisms in granular filters, which arise from inherent particle shape variations and different preparation methods. Using the discrete element method, diverse filter samples underwent extensive numerical filtration tests in different directions. Subsequently, the pore space of these samples was analysed using an extraction algorithm. The results highlight the significant influence of particle shapes and preparation methods on intensifying anisotropy, which in turn remarkably affects directional filtration properties. Analysis of the pore space reveals variations in pore connectivity across different directions, explaining the observed differences in retention coefficients. This study emphasises the need for a comprehensive approach that accounts for constriction size, number, and connectivity to yield precise results. It contributes valuable insights into the role of anisotropy in granular materials, sheds light on complex directional filtration mechanisms, and advances related applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信