Reinforcing long lead time drought forecasting with a novel hybrid deep learning model: a case study in Iran

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES
Mahnoosh Moghaddasi, Mansour Moradi, Mahdi Mohammadi Ghaleni, Zaher Mundher Yaseen
{"title":"Reinforcing long lead time drought forecasting with a novel hybrid deep learning model: a case study in Iran","authors":"Mahnoosh Moghaddasi,&nbsp;Mansour Moradi,&nbsp;Mahdi Mohammadi Ghaleni,&nbsp;Zaher Mundher Yaseen","doi":"10.1007/s13201-025-02377-6","DOIUrl":null,"url":null,"abstract":"<div><p>Drought assessment is inherently complex, particularly under the influences of climate change, which complicates long-term forecasting. This study introduces a novel hybrid deep learning model, Deep Feedforward Natural Networks (DFFNN), enhanced by War Strategy Optimization (WSO), aimed at forecasting the Standardized Precipitation Evapotranspiration Index (SPEI) for lead times of one, three, six, nine, and twelve months. Key parameters of the DFFNN, including the number of neurons and layers, learning rate, training function, and weight initialization, were optimized using the WSO algorithm. The model’s performance was validated against two established optimizers: Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). Evaluations were conducted at two synoptic stations with distinct climatic conditions in Iran. Results demonstrated that the WSO-DFFNN model achieved superior performance for SPEI 12 (t + 1) with a correlation coefficient (r) of 0.9961 and Normalized Root Mean Square Error (NRMSE) of 0.1028; for SPEI 12 (t + 3) with r = 0.8856 and NRMSE = 0.1833; for SPEI 12 (t + 6) with r = 0.8573 and NRMSE = 0.2203; for SPEI 12 (t + 9) with r = 0.7951 and NRMSE = 0.2479; and for SPEI 12 (t + 12) with r = 0.7840 and NRMSE = 0.3279 at the Chabahar station. Additionally, the WSO-DFFNN model outperformed for SPEI 12 (t + 1) with r = 0.9118 and NRMSE = 0.1704; for SPEI 12 (t + 3) with r = 0.8386 and NRMSE = 0.2048; for SPEI 12 (t + 6) with r = 0.7602 and NRMSE = 0.2919; for SPEI 12 (t + 9) with r = 0.6379 and NRMSE = 0.2843; and for SPEI 12 (t + 12) with r = 0.6044 and NRMSE = 0.3463 at the Anzali station. The results obtained from this study have the potential to improve drought management strategies.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 3","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-025-02377-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-025-02377-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Drought assessment is inherently complex, particularly under the influences of climate change, which complicates long-term forecasting. This study introduces a novel hybrid deep learning model, Deep Feedforward Natural Networks (DFFNN), enhanced by War Strategy Optimization (WSO), aimed at forecasting the Standardized Precipitation Evapotranspiration Index (SPEI) for lead times of one, three, six, nine, and twelve months. Key parameters of the DFFNN, including the number of neurons and layers, learning rate, training function, and weight initialization, were optimized using the WSO algorithm. The model’s performance was validated against two established optimizers: Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). Evaluations were conducted at two synoptic stations with distinct climatic conditions in Iran. Results demonstrated that the WSO-DFFNN model achieved superior performance for SPEI 12 (t + 1) with a correlation coefficient (r) of 0.9961 and Normalized Root Mean Square Error (NRMSE) of 0.1028; for SPEI 12 (t + 3) with r = 0.8856 and NRMSE = 0.1833; for SPEI 12 (t + 6) with r = 0.8573 and NRMSE = 0.2203; for SPEI 12 (t + 9) with r = 0.7951 and NRMSE = 0.2479; and for SPEI 12 (t + 12) with r = 0.7840 and NRMSE = 0.3279 at the Chabahar station. Additionally, the WSO-DFFNN model outperformed for SPEI 12 (t + 1) with r = 0.9118 and NRMSE = 0.1704; for SPEI 12 (t + 3) with r = 0.8386 and NRMSE = 0.2048; for SPEI 12 (t + 6) with r = 0.7602 and NRMSE = 0.2919; for SPEI 12 (t + 9) with r = 0.6379 and NRMSE = 0.2843; and for SPEI 12 (t + 12) with r = 0.6044 and NRMSE = 0.3463 at the Anzali station. The results obtained from this study have the potential to improve drought management strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信