A Gauss–Bonnet Formula for the Renormalized Area of Minimal Submanifolds of Poincaré–Einstein Manifolds

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Jeffrey S. Case, C Robin Graham, Tzu-Mo Kuo, Aaron J. Tyrrell, Andrew Waldron
{"title":"A Gauss–Bonnet Formula for the Renormalized Area of Minimal Submanifolds of Poincaré–Einstein Manifolds","authors":"Jeffrey S. Case,&nbsp;C Robin Graham,&nbsp;Tzu-Mo Kuo,&nbsp;Aaron J. Tyrrell,&nbsp;Andrew Waldron","doi":"10.1007/s00220-024-05228-8","DOIUrl":null,"url":null,"abstract":"<div><p>Assuming the extrinsic <i>Q</i>-curvature admits a decomposition into the Pfaffian, a scalar conformal submanifold invariant, and a tangential divergence, we prove that the renormalized area of an even-dimensional minimal submanifold of a Poincaré–Einstein manifold can be expressed as a linear combination of its Euler characteristic and the integral of a scalar conformal submanifold invariant. We derive such a decomposition of the extrinsic <i>Q</i>-curvature in dimensions two and four, thereby recovering and generalizing results of Alexakis–Mazzeo and Tyrrell, respectively. We also conjecture such a decomposition for general natural submanifold scalars whose integral over compact submanifolds is conformally invariant, and verify our conjecture in dimensions two and four. Our results also apply to the area of a compact even-dimensional minimal submanifold of an Einstein manifold.\n</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05228-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Assuming the extrinsic Q-curvature admits a decomposition into the Pfaffian, a scalar conformal submanifold invariant, and a tangential divergence, we prove that the renormalized area of an even-dimensional minimal submanifold of a Poincaré–Einstein manifold can be expressed as a linear combination of its Euler characteristic and the integral of a scalar conformal submanifold invariant. We derive such a decomposition of the extrinsic Q-curvature in dimensions two and four, thereby recovering and generalizing results of Alexakis–Mazzeo and Tyrrell, respectively. We also conjecture such a decomposition for general natural submanifold scalars whose integral over compact submanifolds is conformally invariant, and verify our conjecture in dimensions two and four. Our results also apply to the area of a compact even-dimensional minimal submanifold of an Einstein manifold.

庞加莱-爱因斯坦流形极小子流形重整化面积的Gauss-Bonnet公式
假设外在q曲率允许分解为pfaffan、标量共形子流形不变量和切向散度,我们证明了庞加莱姆-爱因斯坦流形的偶维最小子流形的重整化面积可以表示为其欧拉特征和标量共形子流形不变量的积分的线性组合。我们在二维和四维中导出了这种外在q曲率的分解,从而分别恢复和推广了Alexakis-Mazzeo和Tyrrell的结果。对于一般的自然子流形标量,其在紧子流形上的积分是保形不变的,我们也提出了这样的分解,并在二维和四维上验证了我们的猜想。我们的结果也适用于爱因斯坦流形的紧致偶维极小子流形的面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信