Reflexions on Mahler: Dessins, Modularity and Gauge Theories

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Jiakang Bao, Yang-Hui He, Ali Zahabi
{"title":"Reflexions on Mahler: Dessins, Modularity and Gauge Theories","authors":"Jiakang Bao,&nbsp;Yang-Hui He,&nbsp;Ali Zahabi","doi":"10.1007/s00220-024-05183-4","DOIUrl":null,"url":null,"abstract":"<div><p>We provide a unified framework of Mahler measure, dessins d’enfants, and gauge theory. With certain physically motivated Newton polynomials from reflexive polygons, the Mahler measure and the dessin are in one-to-one correspondence. From the Mahler measure, one can construct a Hauptmodul for a congruence subgroup of the modular group, which contains the subgroup associated to the dessin. We also discuss their connections to the quantum periods of del Pezzo surfaces, as well as certain elliptic pencils. We also study how, in F-theory, 7-branes and their monodromies arise in the context of dessins.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05183-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a unified framework of Mahler measure, dessins d’enfants, and gauge theory. With certain physically motivated Newton polynomials from reflexive polygons, the Mahler measure and the dessin are in one-to-one correspondence. From the Mahler measure, one can construct a Hauptmodul for a congruence subgroup of the modular group, which contains the subgroup associated to the dessin. We also discuss their connections to the quantum periods of del Pezzo surfaces, as well as certain elliptic pencils. We also study how, in F-theory, 7-branes and their monodromies arise in the context of dessins.

对马勒的反思:设计、模块化和规范理论
我们提供了一个统一的框架马勒测度,desdesd 'enfants,规范理论。对于自反多边形的某些物理动机牛顿多项式,马勒测度和dessin是一一对应的。根据Mahler测度,可以构造出模群的同余子群的一个haupt模,其中包含与模群相关的子群。我们还讨论了它们与del Pezzo曲面的量子周期以及某些椭圆铅笔的联系。我们还研究了在f理论中,7膜和它们的单态是如何在衰退的背景下出现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信