Migration of stable release high concentration toluene vapor and microbial activity varies in silty sand soil

IF 3.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Zhongping Sun, Yaju Gong, Wenxia Wei, Yun Song
{"title":"Migration of stable release high concentration toluene vapor and microbial activity varies in silty sand soil","authors":"Zhongping Sun,&nbsp;Yaju Gong,&nbsp;Wenxia Wei,&nbsp;Yun Song","doi":"10.1007/s10532-025-10111-x","DOIUrl":null,"url":null,"abstract":"<div><p>Vapor intrusion (VI) happens when volatile organic compounds (VOCs) migrate from subsurface sources into buildings, harming indoor air quality and occupants’ health. To investigate the migration and biodegradation of volatile organic compounds (VOCs) originating from subsurface sources, a soil column experiment was performed. In this experiment, high-concentration vapor from the liquid phase of toluene was steadily released into silty sand soil, aiming to simulate the conceptual model of a specific site. The experimental findings revealed that, within the silty sand soil, it took 36 h for toluene vapors to diffuse through a 120-cm-long soil column. During this process, the volume fractions of O₂ and CO₂ within the soil column varied. The level of microbial activity in the soil column first rose and then declined, as did the abundance of the dominant degrading toluene bacteria group. The experiment demonstrated that covering a certain thickness of silty sand soil could effectively retard the migration of toluene vapor. In addition, biodegradation occurred during the migration of the toluene vapor. However, long-term exposure to high-concentration toluene vapors inhibited both the activity and growth of microorganisms within the soil column.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-025-10111-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Vapor intrusion (VI) happens when volatile organic compounds (VOCs) migrate from subsurface sources into buildings, harming indoor air quality and occupants’ health. To investigate the migration and biodegradation of volatile organic compounds (VOCs) originating from subsurface sources, a soil column experiment was performed. In this experiment, high-concentration vapor from the liquid phase of toluene was steadily released into silty sand soil, aiming to simulate the conceptual model of a specific site. The experimental findings revealed that, within the silty sand soil, it took 36 h for toluene vapors to diffuse through a 120-cm-long soil column. During this process, the volume fractions of O₂ and CO₂ within the soil column varied. The level of microbial activity in the soil column first rose and then declined, as did the abundance of the dominant degrading toluene bacteria group. The experiment demonstrated that covering a certain thickness of silty sand soil could effectively retard the migration of toluene vapor. In addition, biodegradation occurred during the migration of the toluene vapor. However, long-term exposure to high-concentration toluene vapors inhibited both the activity and growth of microorganisms within the soil column.

Graphical Abstract

Abstract Image

稳定释放高浓度甲苯蒸气在粉砂土壤中的迁移及微生物活性变化
当挥发性有机化合物(VOCs)从地下源迁移到建筑物中时,就会发生蒸汽侵入(VI),损害室内空气质量和居住者的健康。为了研究地下源挥发性有机化合物(VOCs)的迁移和生物降解,进行了土壤柱实验。本实验将甲苯液相中的高浓度蒸汽稳定释放到粉质砂土中,旨在模拟特定场地的概念模型。实验结果表明,在粉砂质土壤中,甲苯蒸气通过120厘米长的土柱需要36小时。在此过程中,土壤柱内O₂和CO₂的体积分数发生了变化。土壤柱中的微生物活动水平先上升后下降,主要降解甲苯细菌群的丰度也是如此。实验表明,覆盖一定厚度的粉砂土可以有效地延缓甲苯蒸气的迁移。此外,甲苯蒸气在迁移过程中发生了生物降解。然而,长期暴露于高浓度甲苯蒸气中会抑制土壤柱内微生物的活性和生长。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biodegradation
Biodegradation 工程技术-生物工程与应用微生物
CiteScore
5.60
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms. Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信