Preparation and electrochemical dynamics simulation of cellulose-based composite films with different hierarchical structures applied in supercapacitors

IF 4.9 2区 工程技术 Q1 MATERIALS SCIENCE, PAPER & WOOD
Chuanyin Xiong, Bo Wang, Yong Yin, Juntao Song, Zhao Zhang, Dongping Li, Qiusheng Zhou, Mengxia Shen, Yonghao Ni
{"title":"Preparation and electrochemical dynamics simulation of cellulose-based composite films with different hierarchical structures applied in supercapacitors","authors":"Chuanyin Xiong,&nbsp;Bo Wang,&nbsp;Yong Yin,&nbsp;Juntao Song,&nbsp;Zhao Zhang,&nbsp;Dongping Li,&nbsp;Qiusheng Zhou,&nbsp;Mengxia Shen,&nbsp;Yonghao Ni","doi":"10.1007/s10570-025-06383-4","DOIUrl":null,"url":null,"abstract":"<div><p>As is well known, pore structure has a significant impact on the storage and transport behavior of electrolyte ions. Cellulose nanofibers (CNFs), a green biomass material, not only have good processability and flexibility, but can also be used to design and construct membrane materials with rich pore structures. It has broad application prospects in the field of flexible energy storage and has received widespread attention from researchers. However, there is still limited research on the precise design and regulation of pore structures in CNF-based composites with different pore structures, as well as their impact mechanisms on electrolyte ion storage and transport behavior. In this study, five different hierarchical structures were set up based on CNF-loaded reduced graphene oxide (CNF@RGO) composite films that were fabricated by using different lengths of CNFs as the substrate by sequential alternating filtration method. Furthermore, COMSOL Multiphysics was used for simulation and prediction to study the influence of different pore structures on their capacitance. Finally, further verification will be conducted through experiments. The simulation and experimental results show that when the internal pore structure is distributed in the order of large, small, and large pore sizes from the outside to the inside, the CNF@RGO composite material can obtain a larger area specific capacitance of 29.7 Mf cm<sup>−2</sup> and a higher energy density of 14.8 mWh cm<sup>−2</sup>. As a whole, this research provides a reference direction for designing and constructing electrode materials with different pore structure combinations in the future to improve the energy storage performance of energy storage devices or electrode materials.</p></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"32 3","pages":"1821 - 1833"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-025-06383-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

As is well known, pore structure has a significant impact on the storage and transport behavior of electrolyte ions. Cellulose nanofibers (CNFs), a green biomass material, not only have good processability and flexibility, but can also be used to design and construct membrane materials with rich pore structures. It has broad application prospects in the field of flexible energy storage and has received widespread attention from researchers. However, there is still limited research on the precise design and regulation of pore structures in CNF-based composites with different pore structures, as well as their impact mechanisms on electrolyte ion storage and transport behavior. In this study, five different hierarchical structures were set up based on CNF-loaded reduced graphene oxide (CNF@RGO) composite films that were fabricated by using different lengths of CNFs as the substrate by sequential alternating filtration method. Furthermore, COMSOL Multiphysics was used for simulation and prediction to study the influence of different pore structures on their capacitance. Finally, further verification will be conducted through experiments. The simulation and experimental results show that when the internal pore structure is distributed in the order of large, small, and large pore sizes from the outside to the inside, the CNF@RGO composite material can obtain a larger area specific capacitance of 29.7 Mf cm−2 and a higher energy density of 14.8 mWh cm−2. As a whole, this research provides a reference direction for designing and constructing electrode materials with different pore structure combinations in the future to improve the energy storage performance of energy storage devices or electrode materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellulose
Cellulose 工程技术-材料科学:纺织
CiteScore
10.10
自引率
10.50%
发文量
580
审稿时长
3-8 weeks
期刊介绍: Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信